Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Комплексные случайные переменны гауссовские

Говорят, что п комплексных случайных переменных Уд,. ... .., и являются совместно гауссовскими, если их характеристическая функция имеет вид  [c.48]

Совместно гауссовские случайные переменные 42, 44, 46 --круговые комплексные случайные переменные 49 Совместное распределение 23 Спектр мощности Кармана 368 --Колмогорова 367  [c.518]

Б. Комплексные гауссовские случайные переменные  [c.48]


Чтобы стало ясно происхождение термина круговая , лучше всего, пожалуй, рассмотреть простой случай одной круговой комплексной гауссовской случайной переменной. Имеем  [c.49]

Контуры постоянной вероятности в плоскости (г, ) оказываются окружностями, а потому и и называется круговой комплексной гауссовской случайной переменной.  [c.50]

Заметим, что действительная и мнимая части круговой комплексной гауссовской случайной функции не коррелированы и, следовательно, независимы. Если же 11] и Уд — две такие совместные случайные переменные, то действительная часть величины и1 может иметь любую степень корреляции с действительной и мнимой частями переменной Уд, если только в соответствии с (2.8.15) выполняются условия  [c.50]

Кроме того, поскольку Т Тс, величина Л12(Т ) определяется как результат интегрирования величины и(Рь <)и (Р2, О по многим независимым флуктуационным интервалам. Непосредственно из центральной предельной теоремы следует, что при таких временах интегрирования величину Л12 Т) приближенно можно считать комплексной гауссовской случайной переменной. Однако комплексная гауссовская случайная переменная не является, вообще говоря, круговой (т. е. Ф и ее среднее значение не равно нулю. Благодаря отсутствию корреляции между величинами Я 2 Т) и 2 Т) (и, следовательно, в предположении о гауссовском распределении, благодаря их статистической независимости) мы можем написать приближенно совместную плотность распределения в виде  [c.251]

В соответствии с тем, что ранее говорилось относительно случайных блужданий, комплексные поля, определяющие спекл-структуру, являются круговыми комплексными гауссовскими случайными переменными. Из теоремы о моментах для комплексных гауссовских переменных следует, что  [c.335]

Теперь воспользуемся следующим соотношением, справедливым для любой действительнозначной гауссовской случайной переменной г и любой комплексной постоянной а  [c.377]

Круговые комплексные гауссовские случайные переменные часто встречаются на практике. Важное свойство таких случайных переменных выражается теоремой о комплексных гауссовских моментах, которая может быть доказана на основании теоремы о действительных гауссовских моментах [формула (2.7.13)] и условий циркулярности (2.8.14) и (2.8.15). Пусть 1]], Цд,. ... .., — совместные круговые комплексные гауссовские случайные переменные с нулевым средним значением. Тогда  [c.50]


Смотреть страницы где упоминается термин Комплексные случайные переменны гауссовские : [c.134]    [c.227]    [c.240]    [c.331]   
Статистическая оптика (1988) -- [ c.48 , c.50 ]



ПОИСК



Гауссовские случайные переменны

Комплексные случайные переменны

Комплексный гауссовский случайный

Переменные комплексные —

Случайная переменная

Случайность

Совместно гауссовские случайные круговые комплексные случайные переменные



© 2025 Mash-xxl.info Реклама на сайте