Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистический ансамбль локально-равновесный

Излагаемые ниже соображения основаны на том факте, что гидродинамические переменные а (г) соответствуют полу макроскопическим величинам, поскольку обрезающее волновое число Ajq было выбрано таким образом, чтобы пространственная ячейка с размерами / I/Ajq содержала большое число частиц. Тогда каждую из таких ячеек можно рассматривать как малую, но макроскопическую подсистему, взаимодействующую с другими ячейками через свои границы. Согласно общему принципу термодинамической эквивалентности статистических ансамблей (см. раздел 1.3.10 первого тома), можно считать, что энтропия S a) микроканонического ансамбля, определяемого условиями а г) = ft (r), является таким же функционалом от а (г) , как и энтропия Si a) локально-равновесного большого канонического ансамбля от (fl (r)) , если соответствующее фазовое распределение Qi q,p a) удовлетворяет условиям  [c.229]


Примечание. Пригожиным были проведены [4] детальные вычисления удельной энтропии на основе кинетической теории газов по методу Эпскога — Чэпмена и установлено соответствие результатов вычислений термодинамической теории, т. е. соотношению Гиббса (1.1а), если в разложении р ро + Р1 + Р2 + функции распределения р для неравновесного статистического ансамбля удерживать только первое слагаемое рх после равновесного Ро- При удержании второго слагаемого рг удельная энтропия оказывается явной функцией градиентов, действующих в неравновесной системе. Ограничение р ро - -р1, как известно, означает малость отклонения системы от состояния равновесия и требует малости средней длины свободного пробега атомов в сравнении с размерами предоставленной системе области, малости изменений температуры, состава, скорости на длине свободного пробега и т.д. Наличие этих требований служит, с одной стороны, обоснованием введения в теорию понятий локальных величин (удельной энтропии, температуры и т. д.), а с другой  [c.30]


Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.0 ]



ПОИСК



Ансамбль

Ансамбль равновесный

Ансамбль статистический

Г локальный

К локальности

Статистический ансамбль равновесный



© 2025 Mash-xxl.info Реклама на сайте