Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геометрия оболочки внешняя внутренняя

В отличие от предыдущего примера, геометрия оболочки не описывается единым аналитическим выражением — имеются три участка — сферический, торовый и цилиндрический. Другой особенностью является постановка граничных условий на внутренней и внешней границах интервала интегрирования. Так как при г- О коэффициенты уравнений имеют особенность, расчет начинается с точки, отстоящей на небольшом расстоянии от центра (в данном примере — на расстоянии 0,02/-ц). В этой точке принимаются условия, характерные для полюса Ti= Ti, = М .  [c.198]


Поскольку голографическая интерферометрия изучает деформацию поверхности (обычно криволинейной) непрозрачного тела, необходимо учитывать эту поверхность и различать, как и прежде, внутренние (касательные) и внешние (нормальные) величины. Поэтому кроме концепций дифференциальной геометрии, приведенных в гл. 2, см. также [2.8, 2.9, 5.1], будем использовать некоторые концепции теории оболочек [5.2—5.19].  [c.155]

Введение. В работах [1, 2] рассмотрено обобщение классической задачи о движении твердого тела в бесконечном объеме идеальной жидкости, совершающей безвихревое движение и покоящейся на бесконечности (см., например, [3, 4]). Изучено свободное (при отсутствии внешних сил) движение изменяемого тела при условии, что изменение геометрии масс тела и его формы осуществляется за счет действия внутренних сил и описывается наперед заданными функциями времени относительно некоторой подвижной системы отсчета. В такой постановке задача о движении изменяемого тела сводится к изучению указанной системы отсчета. В работах [1, 2] обнаружен следующий новый эффект закон изменения геометрии тела можно подобрать таким образом, чтобы обеспечить перемещение тела в любую (сколь угодно далекую) точку окружающего объема жидкости. Полная управляемость такой системы оказалась возможной и при сохранении формы внешней поверхности тела (т. е. лишь за счет изменения внутренней геометрии масс). Единственное условие состоит в том, чтобы присоединенные массы тела (которые, напомним, зависят лишь от формы его поверхности) не были все равны между собой. Отметим, что полученные ранее результаты о возможности неограниченного движения изменяемого тела (см., например, [5, 6]) основываются на использовании таких механизмов управления геометрией тела, при которых изменяется форма его поверхности и объем. В настоящей работе более детально изучается механизм перемещения тела с жесткой оболочкой за счет изменения лишь его геометрии масс, а также изучается движение изменяемого тела в однородном силовом поле.  [c.465]

G5 b rep model - представление одного или более тел, каждое из которых состоит из замкнутых внешней и внутренних оболочек. Геометрия поверхностей выражена кривыми. Большинство понятий аналогично используемым в G3.  [c.175]

Наличие подкрепляющего элемента на внутреннем контуре открытых в вершине оболочек существенно влияет на напряженно-деформированное состояние и критическую нагрузку. На рис. 43 приведены результаты численного анализа изгиба и устойчивости пологой открытой и подкрепленной в вершине сферической оболочки. Параметры геометрии и механических свойств, условия опнрания и нагружения соответствуют параметрам, приведенным на рис. 40. Подкрепляющее кольцо имеет квадратное поперечное сечение (кк = Ьк = 3 мм) и выполнено из того же материала, что и оболочка. Критическая нагрузка (<7кр) для такой оболочки (как видно при сопоставлении рис. 43 и 40) возрастает почти в 4 раза. На рис. 43, б—г показано распределение прогибов, усилий и моментов при внешней нагрузке, близкой к величине в сравниваемом примере (штриховые линии) и к критической (сплошные линии).  [c.79]



Смотреть страницы где упоминается термин Геометрия оболочки внешняя внутренняя : [c.134]   
Устойчивость и оптимизация оболочек из композитов (1988) -- [ c.84 ]



ПОИСК



Геометрия

Геометрия оболочки

Геометрия оболочки внешняя



© 2025 Mash-xxl.info Реклама на сайте