Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условие граничное идеализированное геометрическое

В дальнейшем речь идет только об идеализированных граничных условиях, и они будут подразделяться на геометрические и статические. Под геометрическими граничными условиями подразумеваются требования, чтобы краевые перемещения или углы поворота в некотором направлении, определенном в каждой точке края, имели заданное значение (в однородном случае равное нулю). Аналогичный смысл имеют статические граничные условия, в которых вместо перемещений и углов поворота задаются усилия и моменты.  [c.212]


Пусть для некоторой оболочки (не обязательно нулевой кривизны) поставлена полная краевая задача безмоментной теории, заключающаяся в том, что на каждом краю сформулированы по два идеализированных тангенциальных граничных условия, среди которых, вообще говоря, будет находиться и некоторое число геометрических условий. Тогда можно ввести важное для дальнейшего понятие о возможных изгибаниях, подразумевая под этим такие изгибания срединной поверхности, которые удовлетворяют всем однородным тангенциальным геометрическим граничным условиям данной полной краевой задачи безмоментной теории. В число тангенциальных граничных условий задачи могут и не входить геометрические граничные условия. Тогда возможными надо считать все изгибания, которые имеет срединная поверхность оболочки, когда ее кр.ая ничем не стеснены. В дальнейшем выяснится, что с прочностной точки зрения наиболее выгодны (они Чаще всего и применяются на практике) те оболочки, в которых тангенциальные геометрические граничные условия обеспечивают жесткость срединной поверхности, т. е. не допускают каких бы то ни было ее изгибаний. В таких случаях будем говорить, что возможные изгибания равны нулю.  [c.219]

Решение задачи для упругой области состоит в нахождении выражений для компонент напряжений, удовлетворяющих условиям равновесия [уравнения (28)] и совместности [(уравнения (31)], а также граничным условиям, соответствующим рассматриваемой задаче. Аналогично простому интегрированию по одной переменной, дающему при последующем дифференцировании исходную формулу, решение упругой задачи должно удовлетворять исходным уравнениями. Что касается многих стандартных интегральных решений, то математикам известны типы функций, которые, будучи продифференцированы, удовлетворяют этим уравнениям. Любое аналитическое выражение представляется чрезвычайно сложным, если только геометрическая форма тела не описывается простыми математическими функциями. Даже если она и проста, то общие решения для трехмерного случая получить трудно, не сделав соответствующих упрощений, например рассматривая только тела вращения и выполнив основные расчеты для идеализированного состояния, или плоского напряжения (Од = 0), или плоской деформации (Sg = 0).  [c.30]


Теория упругих тонких оболочек (1976) -- [ c.212 ]



ПОИСК



Граничные условия

Условие граничное идеализированное

Условия геометрические



© 2025 Mash-xxl.info Реклама на сайте