Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура с фенольным связующим

Наибольшее снижение прочности стеклопластика СВАМ отмечается в растворе окисляющей азотной кислоты, наименьшее-в уксусной. Фенольные связующие устойчивы в неокисляющих минеральных кислотах, поэтому у прессованных фенольных стеклопластиков с плотной структурой при величинах сорбции от 0,18 до 4,55% снижение прочности не превышает 10-11% от исходной [109]. Эти данные сильно отличаются от приведенных выше и вряд ли могут быть объяснены более плотной структурой материала. Влияние концентрации среды на стойкость фенольных стеклопластиков видно из рис. 5.25 зависимость носит явно выраженный экстремальный характер [135]. Окислительный характер среды проявляется в разрушении связующего (кривая I на рис. 5.25), которое прогрессирует с ростом концентрации азотной кислоты. Аналогичный вид имеет концентрационная зависимость влияния кислоты и на другие типы термореактивных смол.  [c.138]


Возможность проведения таких микроструктурных исследований реализована в установке ИМАШ-11 (см. гл. III). На этой установке изучали особенности изменения структуры образцов на примере термостойких ориентированных стеклопластиков АГ-4С и ЭФ-С в зависимости от интенсивности и продолжительности теплового воздействия при одностороннем программированном нагреве. Стеклопластик ЭФ-С представляет собой анизотропный прессованный волокнистый материал, связующим в котором служит эпоксидно-фе-нольная смола, а наполнителем являются стеклонити. Стеклопластик АГ-4С— это анизотропный прессованный волокнистый материал на основе модифицированной фенольно-формальдегидной смолы. Выбор стеклопластиков ЭФ-С и АГ-4С для исследования обусловлен тем, что уже накоплены основные данные о механических свойствах этих эффективных и широко применяемых в высокотемпературной технике материалов при их статических испытаниях в условиях нормальных температур и изотермических режимах нагрева [77 114] .  [c.263]

Коррозионностойкие армированные пластики занимают ведущее положение как конструкционные химически стойкие материалы. Они работают в самом материалоемком интервале эксплуатационных условий от криогенных температур до 150 °С, от глубокого вакуума до давления 20 МПа, в широком диапазоне жидких и газовых агрессивных сред. В качестве связующих коррозионностойких стеклопластиков используют ненасыщенные полиэфирные, эпоксидные, фенольные и фурановые смолы. Для обеспечения длительной работоспособности в условиях воздействия агрессивных сред наибольшее применение получила многослойная структура. Она включает в себя  [c.97]

Для соединений с пространственной структурой макромолекул характерна полная нерастворимость, отсутствие эластичности и пластичности при повышенной температуре, высокая твердость и хрупкость. Это объясняется высоким молекулярным весом вещества и специфической структурой макромолекул, напоминающей жесткую пространственную сетку с часто расположенными поперечными связями. Такой структурой обладают многие синтетические смолы (фенольно-формальдегидные, амино-формальдегидные, полиэфирные и др.) в конечной стадии смолообразования.  [c.10]

Этот вид заполнителя является наиболее прочным и устойчивым к повреждениям. Производятся готовые конструкции в основном из синтетической каландрированной бумаги Номекс производства фирмы Дюпон . Изготавливается готовый заполнитель по технологии растяжения пакета (так же, как алюминиевые или стеклопластиковые) с использованием фенольного или другого подходящего связующего. Механические свойства арамидных бумаг в структуре заполнителя, конечно, ниже, чем у алюминия (особенно модуль упругости), однако они обладают уникальной 356  [c.356]


Аминопласты по своим свойствам несколько напоминают фенольные пластики (следует отметить, что это название не совсем точно, так как для синтеза этих материалов используются не только амины, но и амиды). Связующими аминопластов служат кар-бамидо- или меламиноформальдегидные смолы, получаемые реакцией формальдегида соответственно с карбамидом и меламином. Реакции их образования и структура хорошо описаны в литературе (например, в [24]). Карбамидоформальдегидные смолы дешевле фенольных, имеют более светлую окраску и более устойчивы к образованию треков в электрическом поле, но они менее тепло-и водостойки. Применение волокнистых наполнителей для карба-мидоформальдегидных смол ограничено отбеленной древесной массой и рубленой регенерированной целлюлозой (целлофаном). Они очень редко используются в сочетании с тканями и минеральными наполнителями. Все возрастающее значение имеют меламиноформальдегидные смолы в производстве вспененной теплоизоляции для стен. Меламиноформальдегидные смолы превосходят по  [c.24]

Кремнийорганические смолы в промышленности получают гидролизом смесей хлорсиланов. В основную цепь макромолекулы входят силоксановые связи. Это довольно дорогие смолы, однако по ряду свойств в отвержденном состоянии, таких как кратковременная устойчивость при температуре в интервале 250—500°С и высокие показатели электроизоляционных свойств стеклотексто-литов на их основе они превосходят материалы на основе феноло-и меламиноформальдегидных смол (см. [5] дополнительного списка литературы). Пресс-порошки на основе кремнийорганических смол, стеклянных или асбестовых волокон и соответствующих катализаторов производят в промышленности в небольших количествах и они дороже даже фторопластов. Долго не могли найти доступной полимерной матрицы, длительно работающей в температурном интервале 150—250 °С (промежуточной между эпоксидными полимерами и полиимидами), которая сочетала бы различные свойства при умеренной стоимости. До некоторой степени ряд полимеров, полученных реакцией Фриделя — Крафтса и имеющих структуру, промежуточную между полифениленами и фенольными смолами, удовлетворяют этим требованиям и начинают широко использоваться в производстве композиционных материалов.  [c.25]

В смолах кислотной конденсации метилольных групп очень мало или совсем нет, поэтому поперечные связи между цепями не образуются и желатинизация не происходит. Таким образом, для этого типа смол исключается возможность реакции с маслами, имеющаяся у смол щелочной конденсации. Значительное улучшение свойств пленок масляных лаков, полученных на основе этого типа смол и льняного масла, по сравнению с пленками одного масла или лака на основе масел и эфира канифоли, оказывается гораздо большим, чем можно было бы объяснить простой дисперсией фенольной смолы в льняном масле. О повышении прочности, водо- и щелочеустойчивости лаков на этих смолах уже упоминалось выше в этом разделе. Ограниченность современных физических и химических методов определения структуры подобных смоляных комплексов тормозит их исследование.  [c.205]

Стекловолокнистый анизотропный материал (СВАМ). Представляет собой нетканый стекловолокнистый материал, полученный из склеенных между собой связующим веществом стеклянных волокон на агрегате, совмещающем вытягивание стеклянных нитей, укладку их на вращающемся барабане и склейку. В качестве связующего вещества применяются смолы фенольные, эпоксиднофенольные, бутва-рбфенольные в виде клея БФ и др. Содержание связующего вещества в шпоне 20—35%, стекловолокна — 65—80%. СВАМ производится однонаправленным и с перекрестной структурой.  [c.27]


Смотреть страницы где упоминается термин Структура с фенольным связующим : [c.350]    [c.353]    [c.305]    [c.356]    [c.21]    [c.114]    [c.403]    [c.249]    [c.180]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.350 , c.353 ]



ПОИСК



Структура связующего



© 2025 Mash-xxl.info Реклама на сайте