Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центральная предельная теорема (частный случай)

Рассмотрим решение задачи для частного случая, когда распределения нагрузки и несущей способности подчиняются нормальному закону. Этот случай имеет широкое применение и позволяет получить простое замкнутое решение. Применение нормального закона оправдано в случае совместного действия достаточно большого числа случайных-возмущений, подчиняющихся различным законам распределения если среди них нет превалирующего, то результирующее возмущающее воздействие согласно центральной предельной теореме теории вероятностей имеет распределение, близкое к нормальному. На практике распределения многих возмущений отличны от нормального хотя бы потому, что целый ряд параметров (предел прочности, размеры и т.п.) не могут быть величинами отрицательными. Но усечения законов распределения обычно невелики, что позволяет игнорировать теоретическую нестрого сть допущения нормального распределения.  [c.8]


При не слишком малом т распределение р(У т х, о) уже не может быть выражено через эйлеровы статистические характеристики. Однако если т > Г, то правая часть (10.24) может быть представлена в виде суммы ряда интегралов, берущихся по непересекающимся интервалам времени продолжительностью более Т и являющихся слабо зависимыми случайными величинами. Поэтому к этой сумме должна быть применима центральная предельная теорема для слабо зависимых случайных величин, согласно которой распределение вероятностей суммы большого числа таких величин при некоторых широких условиях оказывается очень близким к нормальному. В последние годы центральная предельная теорема была при некоторых условиях доказана и непосредственно для интегралов вида (10.24) (см., например, Розанов (1990), где рассмотрен случай интеграла от стационарной случайной функции близкие теоремы имеются и для интегралов от некоторых нестационарных случайных функций). К сожалению, прямо воспользоваться этими доказательствами все же нельзя, так как фигурирующие в них условия, налагаемые на случайные функции, не могут быть точно проверены в применении к характеристикам реальных процессов. Тем не менее эти условия настолько естественны, что было бы крайне странно, если бы распределение вероятностей для смещения У(т) при т > Г существенно отличалось от нормального распределения. В некоторых случаях распределение для (т) (или хотя бы для отдельных компонент этого вектора) может быть найдено экспериментально с помощью измерения распределения концентрации в различных сечениях облака , создаваемого источником примеси (например, распределения температуры в различных сечениях теплового следа за нагретым телом). Таким образом, удалось и экспериментально показать, что во многих турбулентных течениях распределение для (т) при больших т действительно очень близко к нормальному, причем в частном случае турбулентности в аэродинамической трубе за решеткой оказалось, что оно является почти нормальным при всех значениях т (см., например, Коллис (1948), Таунсенд (1951), Уберои и Корсин  [c.494]


Смотреть страницы где упоминается термин Центральная предельная теорема (частный случай) : [c.146]   
Смотреть главы в:

Термодинамика и статистическая физика Т.3 Изд.2  -> Центральная предельная теорема (частный случай)



ПОИСК



К п частный

Ось центральная

Предельные теоремы

Теорема центральная предельная

Частные случаи

Частный случай



© 2025 Mash-xxl.info Реклама на сайте