Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача трех вихрей на плоскости и сфере

Поскольку движение точечных вихрей на сфере является обобщением случая плоского вихревого течения, приведем кратко известные результаты для задачи о взаимодействии вихрей на плоскости. Простейший пример движения двух вихрей рассмотрен Гельмгольцем [23]. Г. Кирхгоф [27] установил гамильтоновость уравнений движения N точечных вихрей, а также нашел четыре первых интеграла этой системы, которые связаны с независимостью гамильтониана от времени и его инвариантностью относительно параллельного переноса и поворота системы координат. Интегрируемость задачи трех вихрей отметил А. Пуанкаре [32] (существуют три первых интеграла, находящихся в инволюции). В работе [18] система точечных вихрей рассматривалась в качестве модели двумерной турбулентности. Там же получено решение задачи о взаимодействии трех одинаковых вихрей. Авторы работы [19] на основе численных расчетов устанавливают стохастические свойства системы четырех вихрей и тем самым показывают, что двумерное течение идеальной жидкости в общем случае не является вполне интегрируемой системой. Как уже было отмечено, аналитическое доказательство неинтегрируемости системы четырех точечных вихрей на плоскости дано в работах Зиглина [9, 33]. Отметим также работы [20] и [22]. В [20] проинтегрирована в эллиптических функциях система трех одинаковых вихрей и показана хаотизация движения четырех вихрей равной интенсивности. В [22] рассматриваются интегрируемые случаи движения четырех вихрей.  [c.376]



Смотреть страницы где упоминается термин Задача трех вихрей на плоскости и сфере : [c.90]   
Смотреть главы в:

Фундаментальные и прикладные проблемы теории вихрей  -> Задача трех вихрей на плоскости и сфере



ПОИСК



Вихрь

Задача о сфере

Задача п тел на плоскости

Задача трех тел

Сфера



© 2025 Mash-xxl.info Реклама на сайте