Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы аппроксимации аэрозольных оптических характеристик

Методы аппроксимации аэрозольных оптических характеристик  [c.225]

Изложенные в главе методы аппроксимации спектрального хода аэрозольного коэффициента ослабления (рассеяния) могут быть использованы при решении разнообразных задач оптического зондирования атмосферы и прежде всего тех, которые основываются на явлении молекулярного поглощения. В частности, к ним можно отнести восстановление профилей концентрации озона по данным лазерного зондирования, когда в дифференциальной методике требуется корректно учесть влияние вклада аэрозольного и молекулярного рассеяния. В главе подробно излагается так называемая методика локального прогноза, развитая на основе качественных методов теории аппроксимации оптических характеристик светорассеяния в атмосфере. Кратко обсуждены математические аспекты, связанные с постановкой и решением обратных атмосферно-оптических задач, использующих явление поглощения газовыми составляющими. Физическое содержание этих задач и их практическую значимость можно найти в работах [8, 10, 11].  [c.225]


В пределах настоящего раздела будут изложены методы численного решения аппроксимационных задач для оптических характеристик светорассеяния полидисперсными системами частиц. Решив задачу по восстановлению непрерывного хода s (X), нетрудно затем выделить из ex( ) вторую компоненту в пределах интервала зондирования Л. Этим самым решается одна из очень важных задач прикладной оптики по разделению эффектов рассеяния и поглощения. Заметим, что в ряде случаев поглощение не обязательно должно относиться только к газовым компонентам. Поглощение, и особенно селективное, может относиться и к аэрозольному веществу, обусловленному сильной зависимостью его мнимой части т от X. Эффекты поглощения играют особо важную роль в задачах переноса радиации УФ- и ИК-Диапазонов. Излагаемые ниже методы аппроксимации позволят одновременно  [c.226]

Исследуемое преобразование вполне устойчиво к вариациям показателя преломления тп. Причины подобной устойчивости операторов преобразования уже рассматривались ранее в п. 3.3. В расчетах предполагалось, что в исходной (модельной) характеристике показатель преломления не зависел от Я и составлял то=1,5—0,002 /. Конечно, при обработке экспериментального материала, полученного при оптическом зондировании атмосферных аэрозолей, необходимо учитывать наличие спектральной зависимости /По (Я) как слева, так и справа от границ интервала 0,35 0,60 мкм]. Для фоновых атмосферных аэрозолей соответствующая информация представлена обширными таблицами в монографической литературе (см., например, [4, 7]). Заметим, что экстраполяция спектрального хода аэрозольного коэффициента ослабления, в УФ-область важна в тех задачах, которые связаны с оценкой концентрации атмосферного озона из оптических измерений [5]. Методы прогноза аэрозольных характеристик светорассеяния в ИК-диапазон важны для повышения надежности в интерпретации данных термического зондирования атмосферы, особенно в полосе 4,3 мкм [28]. Используя развитые выше методы теории аппроксимации, можно решать и ряд других задач оптики и фи- зики атмосферы, в которых учет эффектов аэрозольного рассеяния оптического излучения играет важную роль.  [c.234]

При оценке эффективности того или иного аппарата приближения функций необходимо вычислять их производные. В силу этого аппроксимация оптических характеристик требует разработки методов дифференцирования функций, представляемых параметрическими интегралами. Соответствующий подход к решению этой аналитической задачи впервые был изложен в работе [19], где он использовался для априорной оценки гладкости искомых аэрозольных распределений в обратных задачах светорассеяния. Изложим кратко основы этого подхода, исходя, как и ранее, из пред-  [c.242]


В практике атмосферно-оптических исследований часто возникает необходимость в применении численных методов интерполяции и экстраполяции спектральных и угловых характеристик светорассеяния. Например, это имеет место в задачах разделения спектрального хода молекулярных и аэрозольных коэффициентов ослабления в атмосфере по данным спектральной прозрачности. В случаях, когда требуется дать корректную оценку величины молекулярного поглощения при наличии в соответствующих экспериментальных данных значительного фона рассеяния и т. п. Разработка эффективных методов экстраполяции спектральных характеристик позволит, в частности, прогнозировать значения аэрозольных коэффициентов рассеяния и ослабления в ИК- и УФ-областях, где их непосредственное измерение затруднено из-за преобладания молекулярного поглощения. Исходные оптические данные для подобной экстраполяции можно получить в видимом диапазоне, где имеется достаточно окон прозрачности . Излагаемая ниже теория аппроксимации аэрозольных спектральных характеристик светорассеяния основана на их аналитическом представлении параметрическими интегралами и регуляризирующих алгоритмах численного обращения последних. То, как технически реализуется этот метод аппроксимации, уже говорилось выше, при обсуждении возможных применений операторов восстановления, в первой главе.  [c.224]

В заключительной главе монографии излагается теория аппроксимации оптических характеристик рассеивающей компоненты атмосферы. Типичной задачей, которая решается в рамках этой теории, является восстановление непрерывного спектрального хода любой из характеристик светорассеяния по дискретному набору приближенных измерений. В атмосферно-оптических исследованиях выбор этих измерений увязывается с так называемыми окнами прозрачности. Изложенный в главе метод решения ап-проксимационных задач (метод обратной задачи) позволяет одновременно осуществлять интерполяцию и экстраполяцию характеристик в спектральные интервалы, где их непосредственное измерение недоступно из-за сильного молекулярного поглощения либо в силу каких-то иных причин. В последнем случае типичным примером является прогноз аэрозольных характеристик рассеяния в ближние УФ- и ИК-области по измерениям в видимом диапазоне. Методы аппроксимации в полной мере применимы и для угловых характеристик. Иллюстрацией этого служат примеры восстановления непрерывного углового хода аэрозольных индикатрис рассеяния по некоторым опорным ее измерениям в центральной области углов. При этом оказывается возможной оценка значений индикатрисы (то же самое коэффициента направленного светорассеяния) для таких важных направлений, как рассеяние строго вперед или назад.  [c.11]


Смотреть страницы где упоминается термин Методы аппроксимации аэрозольных оптических характеристик : [c.74]    [c.230]   
Смотреть главы в:

Атмосферная оптика Т.7  -> Методы аппроксимации аэрозольных оптических характеристик



ПОИСК



Аппроксимация

Аэрозольные(ое)

Метод аппроксимации

Метод характеристик



© 2025 Mash-xxl.info Реклама на сайте