Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аниониты

Катиониты, в зависимости от значения константы ионизации Кп, делят на сильнокислотные (/( > 10 ), слабокислотные Кп <С 10 ) и катиониты со смешанными функциями. Аниониты делят на сильноосновные (/< > 10 ), слабоосновные (/Си <С < 10" ) и аниониты со смешанными функциями.  [c.125]

Ионообменные свойства ионитов характеризуются полной и рабочей обменной емкостью. Полная обменная емкость — это общее число всех ионообменных групп в единице объема ионита, выражающееся в мэкв/г. Полная обменная емкость постоянна для данного ионита и зависит только от термического, химического и ионизующего воздействия. Из-за необходимости многократной регенерации ионитов их обменная емкость используется лишь частично. В таком случае вводится понятие рабочей обменной емкости ионитов, которая зависит от условий сорбции и регенерации ионитов. Для катионитов обменные емкости определяют по катионам, для анионитов — по анионам.  [c.125]


Когда происходит полное замещение ионообменных групп, для восстановления объемной емкости необходимо провести регенерацию ионитов, т. е. их обработку раствором кислоты (для катионитов), или щелочи (для анионитов). В этом случае реакция обмена протекает в обратном направлении. Осуществление реакции ионного обмена и последующей регенерации позволяет кроме очистки воды проводить концентрирование адсорбированных смолой веществ.  [c.126]

Таблица 7.2. Свойства анионитов Таблица 7.2. Свойства анионитов
Коэффициент набухания сухого анионита, %  [c.135]

Влажность товарного анионита, %  [c.135]

За счет дозирования аммиака в питательную воду, но не более 1000 мкг/кг. За счет подбора соотношения катионита и анионита в блочно-обессоливающей установке (БОУ) или дозирования аммиака после БОУ.  [c.166]

Для использования в установках с мягким регулированием аниониты производятся в боратной форме.  [c.204]

Vo анионита и сильнокислотного катионита (две колонны в ряд) для очистки воды первого контура перед сбросом ее в слив воды, охлаждающей конденсатор. Теплоноситель будет содержать 10 М щелочи и переменные количества борной кислоты (от 1 до 2000 мг/кг бора). Слои ионитов, следовательно, будут переводиться в щелочно-боратную форму, и можно ожидать изменения их эффективности по извлечению активности после перевода. На основании имеющихся данных ожидается, что эффективность будет отвечать требованиям.  [c.221]

Аниониты (смолы ионообменные) — высокомолекулярные полимерные соединения трехмерной структуры, имеющие ионогенные активные группы, способные к реакциям анионного обмена. Сферические или неправильной формы зерна от белого до коричневого цвета, в зависимости от марок АВ-16Г, АВ-17-8, АВ-17-8чС (сильноосновные) АН-1, АН-2ФН, АН-18-8, АН-31, ЭДЭ-ЮП (слабоосновные), поставляемые по ГОСТу 13504—68. Применяют для очистки, концентрирования, извлечения и разделения веществ, а также в качестве катализаторов и для анализа. Хранят в заводской упаковке (герметичной) в сухих складах при температуре не ниже +2° С.  [c.280]

Алюминиевая пудра 81, 204, сварочная проволока 82, фольга 81, эмаль 213 Алюминиевые бронзы 87, листы 81, порошки 81, профили Й, сплавы 78, трубы 63, 82 Алюминий безводный хлористый 279, для раскисления 76, первичный 76, сернокислый 279, 262, фтористый 279 Амиловый спирт 196 Амилацетат 196 Аминопласты 155 Аммиак 280 Аммиачная селитра 289 Аммоний кремнефтористый, сернокислый, хлористый 280 Аммония сульфат, хлорид 280 Амортизаторы приборные 255 Аморфный графит 268 Амуничная смазка 310 Ангидриды 280 Анид 166 Аниониты 280  [c.335]


Аниониты — см. Ионообменные смолы.  [c.419]

Ионообменные смолы — разновидность ионитов. Высокомолекулярные полимерные соединения трехмерной гелевой и микропористой структур, содержащие функциональные группы основного (аниониты) и кислотного (катиониты) характера.  [c.424]

Как известно, катиониты характеризуются более устойчивыми технологическими показателями, чем аниониты. В связи с этим ниже рассматриваются основные факторы, ухудшающие работу анионитов в схеме обессоливания городских сточных вод.  [c.86]

Аниониты с третичными и четвертичными аминогруппами не взаимодействуют с азотистой кислотой и сорбируют N02 аналогично другим анионам слабых кислот. Поэтому в схемах обессоливания биологически очищенных городских сточных вод не следует применять аниониты с первичными и вторичными аминогруппами [111].  [c.86]

Загрязнение (отравление) анионитов органическими веществами проявляется в снижении обменной емкости, увеличении количества необходимых для регенерации реагентов и воды на отмывку от продуктов регенерации. Высокомолекулярные органические соединения блокируют поры гелевых анионитов, препятствуя процессам сорбции и регенерации.  [c.87]

Вода сначала поступает на Н-катионовый фильтр (рис. 19,20), где все растворенные в воде соли превращаются в соответствующие кислоты прощедщая Н-катионитовый фильтр вода поступает в удалитель диоксида углерода (дегазатор, заполненный насадкой из колец Ращига или хордовой деревянной насадкой), где содержание диоксида углерода в воде снижается до 3 мг/л. Из сборного бака, расположенного под дегазатором, вода подается на анионитовый фильтр, где из нее удаляется основная масса анионов растворенных в воде солей. Если анионитовый фильтр загружен слабоосновным анионитом, то он сорбирует из воды только анионы сильных кислот, но не удаляет кремниевой кислоты. Фильтр же, загруженный сильноосновным анионитом, удаляет также и большую часть растворенной в воде кремниевой кислоты, но при условии регенерации анионита раствором едкого натра.  [c.271]

При необходимости глубокого обессоливания воды с одновременным удалением кремниевой кислоты для производственных целей (при пресности воды более 30° и окисляемости более 7 мг/л Ог), применяют двухступенчатое обессоливание, при котором вода проходит последовательно Н-катионитовый фильтр I ступени фильтр, загруженный активированным углем (для удаления из воды органических веществ) анионитовый фильтр I ступени, загруженный слабоосновным анионитом дегазатор (для удаления углекислоты) Н-катионитовый фильтр II ступени анионитовый фильтр II ступени, загруженный сильноосновным анионитом (для удаления кремниевой кислоты) так называемый барьерный H-Na-кaтиoнитoвый фильтр (сглаживающий возможные проскоки на основных фильт-  [c.271]

После натрий-катионирова-ния вода содержит увеличенное по сравнению с исходной водой количество солей натрия и в том числе бикарбоната, подвергающегося гидролизу- под воздействием температуры питание паровых котлов такой водой вызовет в них нарастание щелочности. Снижение щелочности добавляемой воды -при схеме на-трий-катионирования можно достигнуть, если после первой ступени катионирования воду подавать в фильтры, загруженные слабоосновным анионитом, например марки АН-2Ф, а затем воду направлять во вторую ступень.  [c.384]

Часто оба материала загружают в один аппарат, получив фильтр смешанного действия, поскольку регенерация анионита и катионита ведется раствором Na l. Это позволяет одновременно умягчить воду и снижать ее щелочность, так как в фильтре катионы Са + и Mg + замещаются катионами Na+, а бикарбонатный НСО3 и сульфатный  [c.384]

Анионит представляет собой твердый, нерастворимый в воде материал, способный вступать в реакцию ионного обмена с кислотами. Различают низкоосновные аниониты, вступающие в реакцию с сильными кислотами, и высокоосновные катиониты, вступающие в реакцию с кремниевой кислотой. Образующиеся в рез тате этих реакций соответственно СО2 и Н2О остаются в обессоливаемой воде, а остальные соединения остаются в фильтрующем материале. По мере работы фильтры теряют исходную обменную способность и для ее восстановления их регенерируют, промывая соответствующими растворами.  [c.320]

Улавливание золота из промывных вод проиаводится посредством ионообменных смол. Содержание золота в ваннах промывки колеблется в пределах 1—250 мг/л количество металлических частиц золота в промывных водах после галтования, крацеваиия и полирования может составлять 6—130 мг/л. Извлечение золота из промывных вод осуществляется с помощью анионитов. Для этого используются синтетические мало набухающие и высокопористые аиионитовые  [c.52]


Сильноосновными анионитами являются полистиролы с активными триалкиламмонийными группами, а слабоосновньши — полистиролы с активной аминогруппой. С помощью анионитов воду очищают от анионов кислот и солей.  [c.125]

Выпускаемые в СССР иониты имеют следующие обозначения КУ (катионит универсальный) — сильнокислые катиониты, КБ (катионит буферный) — слабокислые катиониты КФ (катионит фосфорнокислый) АВ — аниониты высокоосновные (сильноосновные) АН — аниониты низкоосновные (слабоосновные) АНКБ — анионит низкоосновный, канионит буферный.  [c.127]

Из анионитов наиболее широко применяются для очистки воды анионит АВ-17-8, получаемый хлорметилированием сополимера стирола с 8 % дивинилбензола с последующим аминированием триметиламином. Анионит устойчив к действию температуры только до 90 °С. При 18—20 °С он устойчив к действию разбавленных кислот, щелочей и окислителей. В ОН-форме способен поглощать из воздуха диоксид углерода, поэтому, как правило, применяется в солевой форме. Для глубокого обессоливания воды и конденсатов его применяют в смешанных фильтрах вместе с катионитом КУ-2-8. Зарубежные аналоги анионита АВ-17-8 —  [c.127]

Для глубокого обессоливания воды и конденсатов применяют особо чистые иониты КУ-2-8чС и АВ-17-8чС. Катионит КУ-2-8чС представляет собой модификацию катионита КУ-2-8 и отличается от него повышенной чистотой. Катионит КУ-2-8чС получают длительной обработкой катионита КУ-2-8 кислотой, щелочью и деионизированной водой. Катионит выпускают в Н-форме и применяют для глубокого обессоливания воды. Анионит АВ-17-8чС является модификацией анионита АВ-17 и также отличается от него повышенной чистотой. Так, содержание хлора в нем допускается не более 5 мкг/л, щелочи — 0,5 мкэкв/г, а железа 0,03 %.  [c.128]

Измельчением обычных ионитов получают порошковые иониты с размером зерен 0,05 мм. Из-за развитой поверхности и тонкой дисперсности ионный обмен в порошковых ионитах происходит в 10 ООО—30 ООО раз быстрее, чем в обычных. Уже при толщине рабочего слоя несколько миллиметров порошковые иониты обеспечивают высокую степень очистки воды. Обычно для глубокой очистки воды применяют смесь порошков катионита и анионита. При этом при притяжении противоположно заряженных частиц ионитов происходит образование флокул, создающих ионитный слой, объем которого в 1—8 раз превышает объем исходных порошков. Такие слои имеют небольшое гидравлическое сопротивление, но высокие фильтрующие и ионообменные свойства  [c.128]

Для обесцвечивания окрашенных вод и осветления природных вод повышенной мутности применяют флокулянты, представляющие собой органические полиэлектролиты. Обработку воды коагулянтами или флокулянтами перед подачей на обессоливание обычно сочетают с ее сорбционной очисткой для удаления органических примесей, а именно, гуминовых и аминокислот, белковоподобных веществ, сахаров till. В качестве сорбентов обычно применяют активированные угли и макропористые аниониты. Оэрбция гуминовых и фульвокислот идет в кислой среде и на анионите в солевой форме, например, на анионите ИА-1. Для удаления амино- и карбоновых кислот применяют анионит АВ-171. Сахара сорбируют углем БАУ.  [c.129]

Как уже указывалось, аниониты могут быть слабоосновные и сильноосновные, причем слабоосновные аниониты поглощают анионы только сильных кислот серной, азотной, хлорной. Силь-ноосновные аниониты поглощают анионы как сильных, так и слабых кислот. Они обладают меньшей обменной емкостью по сравнению со слабоосновными и применяются на второй стадии, после слабоосновных. Аниониты одинаково поглощают различные анионы. Так, из анионов SO4", СГ, NOT преимущественным поглощением обладает анион S04 .  [c.134]

С увеличением концентрации улавливаемых анионов обменная емкость анионитов, в отличие от катионитов, возрастает, так как в этом случае не возникает противоионов в связи с образованием слабодиссоциированных молекул. Сильноосновные аниониты при-  [c.134]

Сильноосновные аниониты поглощают анионы не только минеральных, но и органических кислот, которые лишь частично удаляются при регенерации. Чтобы при этом не происходило накопления органических кислот в анионите, применяют микропористые аниониты. Они имеют однородные крупные поры, из которых органические вещества легко удаляются при регенерации. При удалении из воды ионов возрастает ее удельное электрическое сопротивление и падает удельная электропроводимость. При глубоком обессоливании удельное электрическое сопротивление воды должно быть не выше (5—10)-10 Ом-см, а удельная электропроводимость 0,1—0,2 мкСм/см.  [c.135]

Фильтры первой ступени имеют большую высоту (2—2,5 м) по сравнению с фильтрами второй и третьей ступени (1,5 м). В фильтры смешанного действия загружают смесь катионита КУ-2 и анионита АВ-17. При их смешении образуется однородный фильтруюш ий слой, через который обрабатываемую воду пропускают со скоростью 40—50 м/ч. Для регенерации смеси ионитов ее разделяют на катионит и анионит, причем в соответствии с плотностью зерен ионитов катионит располагается внизу, анионит — наверху. После этого анионит перегружают в другой фильтр и проводят его регенерацию.  [c.138]

Если в обрабатываемой воде присутствуют органические вещества, то они задерживаются анионитами. В основном эти вещества скапливаются в порах зерен анионитов и, не вымываясь за время отмывок и регенерации, отравляют анионит, в результате чего он теряет часть обменной емкости. Чтобы избежать этого, в настоящее время применяют макропористые или изо-пористые аниониты с крупными порами, или перед анионитовыми фильтрами устанавливаются фильтры с активированным углем, сорбирующим органические вещества Обессоленная вода, полученная по обычной схеме, т. е. предварительно осветленная и последовательно пропущенная через слой Н-катионита и ОН-анионита, содержит небольшое количество органических веществ, кремниевой кислоты и диоксида углерода.  [c.139]

Для процессов новейшей технологии часто требуется обессоленная вода, не содержащая кремниевой кислоты и диоксида углерода, т. е. вода особой чистоты. Для получения обессоленной воды без кремниевой кислоты и диоксида углерода осветленную воду пропускают через Н-катионит. Полученная после этого вода содержит сильно- и слабодиссоциированные кислоты, разделение которых происходит раздельно на анионитах первой и второй ступеней. На первой ступени используют слабоосновный анионит для удаления сильнодиссоциированных кислот, на второй — сильноосновный анионит для удаления слабодиссоциированных кислот. Перед второй ступенью для удаления из воды СО2 в схему включают декарбонизаторы. Кремниевую кислоту удаляют на анионитных фильтрах второй ступени. Для получения обессоленной воды особой чистоты осветленную воду пропускают через Н-катионитный фильтр первой ступени, затем через ОН-аниониТ ный фильтр первой ступени, декарбонизатор, Н-катионитный фильтр второй ступени и ОН-анионитный второй ступени.  [c.139]


Найденные величины были на 2,1—3,1% выше расчетных. Зона работала при низкой мощности, чтобы определить физический эффект борирования, и бор затем удалялся путем пропускания через слой анионита и смешанный слой. Остаточная концентрация бора равнялась 0,024 мкг/мл. Это соответствует реактивности 2-10 . Остаточный эффект реактивности не был измерен в пределах точности метода 10 /г. Блюм и Демит [31] описали успешное применение 92%-ной обогащенной борной кислоты в замедлителе из D2O реактора PRTR. Критические испытания реактора не показали заметного изменения реактивности зоны после введения или удаления бора.  [c.193]

Эпокси-анионитами промежуточной основности хорошо извлекается из растворов, содержащих 17 000 мг/кг Н3ВО3 и 100 мк кг N32803. Очищенная борная кислота может быть возвращена в цикл установки.  [c.220]

Деминерализатор со смешанным слоем. На Шиппинг-портской станции [191) отходы первичного теплоносителя, содержащие 0 М LiOH, наведенную и осколочную активность, перед сбросом пропускаются через колонны со смешанными (Н — ОН)-слоями из сильнокислотного катионита и сильноосновного анионита. Исходный раствор обычно имеет низкий уровень активности и наблюдаемые факторы очистки изменяются в широких пределах. Активность фильтрата (общая) только редко превышает (3—4)-10- примерный предел для °Sr.  [c.220]

Радиационное разрушение. Слои ионообменных смол в ядерных установках подвержены действию двух возможных источников радиации. Ими являются короткоживущие изотопы I6N и и долгоживующие изотопы осколков деления и наведенной активности в воде, которая ответвляется на ионооб-менник. Доза от азотной активности может быть ограничена при проектировании необходимым временем распада в ионообменном контуре. Доза от долгоживущей активности составляет существенную часть от общей при работе ионообменника. В работе [31] опубликованы результаты лабораторного и промышленного исследования радиационного разрушения сильнокислотных катионитов и сильноосновных анионитов. Пороговая доза для радиационного разрушения составляет ЫО рад. Потеря полезной обменной емкости в смешанном слое смол происходит в результате потери функциональных групп за счет радиационного разрушения и истощения емкости вследствие по-  [c.222]

Анализируемую пробу воды пропускали последовательно через колонку с анионитом ДЕАЕ в ОН-форме и с катионитом СМ в Н-форме (диаметр колонок 23, высота загрузки 75 мм, навеска 6,0 г), затем колонки промывали 15— 20 мл бидистиллированной воды, промывные воды присоединяли к фильтрату. Десорбцию органических веществ из анионита и катионита проводили 0,1 н. раствором соответственно едкого натра н соляной кислоты.  [c.57]

Для биологически очищенной сточной воды характерны значительные концентрации нитритов и нитратов. Поэтому в воде, поступающей на аниониты, после Н-фильтров будет содержаться азотистая кислота. Как показано в [ПО], первичные и вторичные аминогруппы слабоосновных анионитов вступают во взаимодействие с HNOji  [c.86]

Согласно современнйм представлениям ухудшение рабочих характеристик ионитов обусловлено прежде всего снижением скорости диффузии ионов в зерне ионита [112], т. е. отравление анионита скажется в первую очередь на, процессе регенерации. Отравление приводит к снижению скорости диффузии в химических и физических узлах матрицы ионита, появлению других зон матрицы, в которых скорость диффузии уменьшается. В процессе эксплуатации увеличение степени отравления приводит к еще большему снижению скорости внутренней диффузии. В результате она может стать соизмеримой со скоростью внешней диффузии из разбавленных растворов. В этом случае отравление будет сказываться и на процессе обессоливания воды.  [c.87]

В отравленных анионитах создаются благоприятные условия для накопления полимеризованных форм кремнекислоты вследствие замедления внутридиффузионной кинетики. Присутствие последней способствует необратимой сорбции органических веществ. Накопление высокомолекулярных соединений в ионите эквивалентно уменьшению размеров его пор и, следовательно, способствует еще большему уменьшению коэффициента диффузии. Кроме того, согласно [114J полимеризация кремнекислоты в ионите создает упорядоченную структуру силикат-ионов в адсорбционном слое, что еще больше ухудшает условия десорбции высокомолекулярных соединений из ионита.  [c.87]

На основании экспериментов [115] рекомендуется удалять полимеризованную кремнекислоту промывкой анионита горячим раствором NaOH (80—90°С), а затем раствором Na I. При этом достигается не только значительно большее вытеснение кремнекислоты, но и вытеснение органических веществ на второй стадии обработки раствором Na l.  [c.87]

Поглощение органических веществ приводит к отравлению и слабоосновных анионитов. В [116] показано, что присутствие органических веществ в биологически очищенных сточных водах не влияет на равновесную емкость слабоосновного сорбента. Однако замедление кинетики поглощения ионов ОН-формой сорбента приводит к увеличению длины зоны ионопереноса. Поскольку сорбция органических веществ замедляет кинетику поглощения ионов и не влияет на ионообменное равновесие, рабочую емкость сорбента можно повысить увеличением слоя материала. На основе этого положения в [116] проведено испытание схемы ионирова-ния биологически очищенной сточной воды последовательным фильтрованием через Н- и две ступени ОН-ионитных фильтров. После проскока кислоты на регенерацию отводили головной ОН-фильтр, а в конец цепочки вводили свежеотрегенированный фильтр. Возрастание длины слоя (в 2 раза) позволило более чем вдвое увеличить рабочую емкость ионита по анионам сильных кислот и довести ее до 1200—1300 г-экв/м . Ионитами удалялось примерно 50 % органических соединений исходной воды. Рабочая емкость анионита АН-22 по органическим веществам составила 1,5—3,0 кг/м в единицах ХПК. Таким образом, за счет увеличения загрузки слабоосновного анионита можно обеспечить частичное извлечение органических веществ из. биологически очищенной сточной воды наряду с анионами сильных кислот. Это позволяет снижать глубину очистки на стадии предварительной адсорбционной обработки либо проводить еев схемах полного химического обессоливания непосредственно перед сильноосновными анионитами.  [c.88]


Смотреть страницы где упоминается термин Аниониты : [c.76]    [c.125]    [c.126]    [c.135]    [c.424]    [c.424]    [c.127]   
Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.280 ]

Металлургия благородных металлов (1987) -- [ c.196 ]

Кислородная коррозия оборудования химических производств (1985) -- [ c.78 ]

Водоподготовка Издание 2 (1973) -- [ c.262 , c.264 , c.267 ]

Справочник по монтажу тепломеханического оборудования (1960) -- [ c.475 ]



ПОИСК



Анионы



© 2025 Mash-xxl.info Реклама на сайте