Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения, описывающие состояние материала при циклических нагружениях

Для режима нагружения без высокотемпературной выдержки при постоянной нагрузке уравнение кривой длительного циклического деформирования (3.12) переходит в уравнение связи между циклическими напряжениями и деформациями при мгновенном деформировании с учетом старения материала в процессе малоциклового нагружения. Уравнения состояния материала при длительном малоцикловом нагружении в принятой форме [(3.12) или (3.13)] описывают основные процессы циклического упругопластического деформирования (упрочнение, разупрочнение, асимметрию, одностороннее накопление деформаций, циклическую анизотропию конструкционных материалов при малоцикловом нагружении.  [c.158]


ЦИКЛОВ С использованием соответственно пересчитанных механических характеристик материала. Предположим, что рассматриваемый слоистый композит содержит начальную поперечную сквозную трещину длиной 2а. Тогда первые несколько циклов нагружения при заданных отношениях напряжений и амплитуды максимального напряжения не приведут к существенным изменениям напряженного состояния у кончика трещины. Последующее длительное воздействие циклической нагрузки вызовет изменения в матрице, волокнах и поверхности раздела. Этот процесс описывается уравнениями (2.6), (2.7). Наступает момент, когда характеристики жесткости и прочности композита изменяются настолько, что появляется возможность распространения трещины в наиравлении нагружения, как показано на рис. 2.27. Вначале рост трещины устойчив — это было показано ранее. Следовательно, геометрия образовавшейся трещины такова, что материал еще может безопасно подвергаться дальнейшему нагружению. При этом продолжается уменьшение модулей упругости и прочности, что, вероятно, вызывает ускорение роста трещины. В конечном итоге после многократного повторения циклов нагружения свойства материала ухудшаются настолько, что при амплитудном значении напряжения трещина прорастает катастрофически и наступает усталостное разрушение. Однако следует иметь в виду, что в результате действия механизмов, тормозящих разрушение, как в случае слоистого композита со схемой армирования [0°/90°] , усталостное испытание может закончиться разрушением образца вследствие падения его прочностных свойств. В процессе усталостного нагружения могут, кроме указанного, проявиться и другие механизмы разрушения, такие, как разрушение волокон в окрестности кончика трещины из-за высокой концентрации напряжений. За этим может последовать распространение поперечной трещины, как показано на рис. 2.31, или межслойное разрушение (расслоение) вблизи надреза (рис. 2.16), или вдоль свободных кромок образца (рис. 2.17). В любом из этих случаев развитие процесса разрушения поддается предсказанию. Получив количественную оценку протяженности области разрушения (определяемой как а или а), можно установить соотношения da/dN или da/dN и сравнить их с экспериментальными данными.  [c.90]

Полученные результаты свидетельствуют о том, что для рассмотренных видов длительного пеизотермического нагружения в первом приближении могут использоваться уравнения (5.2) и (5.4), на основе которых траектория активного нагружения представляется как кривая, расположенная на поверхности неизотермического нагружения, а деформации ползучести описываются на основе изохронных циклических кривых, соответствующих температуре в экстремальных точках цикла, причем положение поверхности неизотермического нагружения и изохрон в каждом полуцикле определяется амплитудой предшествующих необратимых деформаций. Ясно, что для описания более сложных режимов нагружения, например, имеющих выдержки под нагрузкой при Т = Ущах в промежуточных точках цикла и ханак-теризующихся переходом к более низкой температуре в экстремальных точках цикла, а также для учета взаимного влияния деформаций ползучести и пластических деформаций, требуется использовать уравнения состояния дифференциального типа. Однако необходимо иметь в виду, что хотя такие уравнения описывают более тонкие эффекты поведения материала, при практи-  [c.126]


Для проведения расчетов на циклическую долговечность при переменных нагрузках, помимо характеристик сопротивления усталости материалов, представленных в виде кривых и поверхностей усталости, необходима также информация о закономерностях накопления усталостных повреждений по мере увеличения числа циклов нагружения. Считается, что мера усталостного повреждения V равна нулю для начального состояния материала и равна единице для момента появления заметной усталостной трещины. Ее появление означает, что процесс разрушения переходит из стадии накопления собственно усталостных повреждений (из инкубационной стадии) в стадию роста усталостной трещины. Задача заключается в получении зависимости v = v (а, п), где о — уровень амплитуд напряжений, устанавливаемый при испытаниях постоянным /г число циклов нагружения (рис. 2.1). Когдаэта зависимость в координатах [v, n/N (а) ], где N (о) — число циклов до разрушения при уровне напряжений а, описывается одним и тем же уравнением и не зависит явно от уровня напряжений а, процесс накопления усталостных повреждений называется автомодельным [4]. Такой процесс показан на рис. 2.2. Так, в случае степенного закона накопления усталостных повреждений  [c.16]


Смотреть страницы где упоминается термин Уравнения, описывающие состояние материала при циклических нагружениях : [c.144]   
Смотреть главы в:

Уравнения и краевые задачи теории пластичности и ползучести  -> Уравнения, описывающие состояние материала при циклических нагружениях



ПОИСК



Нагружение циклическое

Состояние материала

Уравнение состояния

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте