Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения деформирования тел за пределом упругости

Здесь мы сделаем попытку построить уравнения деформирования тел за пределами упругости, вводя некоторые простейшие гипотезы о характере происходящих явлений, которые, как представляется, качественно оправдываются экспериментом.  [c.68]

Поэтому при решении задач об определении напряженного и деформированного состояния однородного изотропного тела, нагруженного за пределами упругости, необходимы уравнения пластического состояния материала (уравнения связи между напряжениями и деформациями или между напряжениями и скоростями деформаций). Такие уравнения устанавливаются на основании законов теории пластичности. Однако прежде, чем перейти к описанию этих законов, сформулируем условия начала текучести, представляющие собой критерии перехода материала в точке тела из упругого состояния в пластическое, т. е, условия начала возникновения пластических деформаций.  [c.81]


Для определения напряженного и деформированного состояния твердого тела, нагруженного за пределами упругости, необходимы уравнения пластического состояния, связывающие напряжения и деформации. Полностью задача о построении таких уравнений в общем случае не решена из-за сложности процесса пластического деформирования, хотя предложено много различных теорий [66—69, 132, 141, 142, 155, 224]. Рассмотрим основные уравнения пластического состояния, широко применяемые в расчетах элементов конструкций о учетом пластических деформаций.  [c.87]

Законы и уравнения теории пластичности позволяют описывать напряженное и деформированное состояния тела, нагруженного за пределами упругости, в предположении, что при заданных температуре и нагрузке напряженное и деформированное состояния с течением времени остаются постоянными. В действительности, напряжения и деформации, возникающие в детали в результате начального нагружения, с течением времени изменяются.  [c.318]

Полное решение проблемы выбора надлежащей модели материала даже в такой упрощенной форме далеко от завершения, однако имеются примеры удачных частных решений. Так, при сверхвысоких (порядка модуля упругости) давлениях, развивающихся при гиперскоростных соударениях, успешно используется модель идеальной жидкости (М. А. Лаврентьев, 1949). Для материалов типа полимеров, для которых существенны эффекты несовершенной упругости, иногда используется модель вязкоупругого тела (см., например, А. Ю. Ишлинский, 1940). Что касается материалов типа металлов, находящихся под действием умеренно высоких напряжений порядка предела текучести (которым, в основном, и посвящен данный обзор), то для их изучения могут использоваться два подхода. В основе первого из них лежит допущение, что за пределами упругости материал переходит в вязко-пластическое состояние и его определяющее уравнение зависит от времени. Начало этому направлению подолбили работы А. А. Ильюшина (1940, 1941), в которых в качестве определяющих уравнений использованы уравнения вязко-пластического течения, не учитывающие упругих деформаций. В этих работах дано решение нескольких теоретических задач (удар по цилиндрическому образцу твердым телом, деформирование полого цилиндра под действием внутреннего давления) и описан сконструированный автором первый пневматический копер, позволявший достигать скоростей деформаций порядка 10 Исек (с помощью его были определены коэффициенты вязкости некоторых металлов). Сразу вслед за тем учениками А. А. Ильюшина были решены задачи о вращении цилиндра в вязко-пластической среде (П. М. Огибалов, 1941) и об ударе цилиндра по вязко-пластической пластинке (Ф. А. Бахшиян, 1948 — опубликование этой работы задержалось на ряд лет). С математической точки зрения уравнения динамики одноосного вязко-пластического тела принадлежат к классу уравнений параболического типа.  [c.303]



Смотреть страницы где упоминается термин Уравнения деформирования тел за пределом упругости : [c.34]    [c.187]    [c.53]    [c.67]    [c.14]    [c.59]    [c.13]    [c.580]   
Смотреть главы в:

Математическая теория пластичности  -> Уравнения деформирования тел за пределом упругости



ПОИСК



Предел упругости

Упругость предел (см. Предел упругости)

Уравнения Уравнения упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте