Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Слабое постоянное электрическое по. 4.2.3. Сильное постоянное электрическое поле

В дальнейшем была установлена возможность получения электретов из неполярных органических и даже из неорганических диэлектриков, в частности керамических. Необходимое для этого условие поляризации сводится к длительному воздействию сильного постоянного электрического поля при повышенной температуре. В сравнительно слабых поляризационных полях полу-50  [c.50]

Кроме большого значения индукции насыщения пермендюр обладает значительной обратимой проницаемостью, что делает его особенно ценным в качестве материала для телефонных мембран. Недостатки пермендюра малое удельное электрическое сопротивление р, высокая стоимость и дефицитность кобальта и ванадия. Пермендюр применяют в постоянных магнитных полях или в слабых переменных полях с сильным подмагничиванием постоянным полем.  [c.329]


Надо отметить, что если носители заряда достаточно сильно связаны с кристаллической решеткой, то возникает так называемая поля-ронная проводимость. Образование полярона связано с искажением (поляризацией) близлежащей области кристаллической решетки носителем заряда. Носитель локализуется в этой области и движется вместе с ней, что значительно уменьшает его подвижность. При слабом взаимодействии носителя с решеткой образуется полярон большого радиуса, характеризующийся слабым искажением решетки и, следовательно, слабым влиянием на подвижность носителя. При сильном взаимодействии электрона или дырки с кристаллической решеткой может образоваться полярон малого радиуса (порядка постоянной решетки). В этом случае искажения решетки очень сильны. Такой полярон очень стабилен и движется даже за счет тепловых флуктуаций в кристалле прыжками. При наложении внешнего электрического поля в этом случае возникает так называемая прыжковая проводимость.  [c.251]

При выводе выражения для постоянной Холла мы задавались некоторыми значениями эффективной массы и времени релаксации, хотя мы не конкретизировали, относится ли все рассмотрение к металлам или полупроводникам. В простых металлах (при небольших полях) измерения дают значения постоянной Холла, близкие к тем, которые мы получили бы, принимая для валентных электронов приближение почти свободных электронов. В полупроводниках п- или р-типа эта величина дает разумное число электронов и дырок соответственно. Одновременные измерения постоянной Холла и электропроводности позволяют найти как число носителей, так и отношение времени релаксации к эффективной массе. Последняя величина непосредственно определяет подвижность, т. е. отношение средней скорости дрейфа к электрическому полю. Оказывается, что конечная формула для постоянной Холла остается справедливой и тогда, когда мы рассматриваем более сложные и анизотропные зонные структуры. Однако при этом интерпретация величины N несколько усложняется. Если мы рассматриваем, например, кристалл, содержащий носители в двух зонах, то N будет некоторой взвешенной суммой числа носителей в каждой зоне, причем веса зависят от эффективной массы и времени рассеяния носителей в каждой из зон. Оказывается также, что поперечное электрическое поле теперь уже не зависит линейно от магнитного поля. В сильных и слабых полях поведение носителей существенно различно. Сильное поле или слабое зависит от того, будет ли произведение циклотронной частоты и времени рассеяния для разных носителей, т. е.  [c.293]


При использовании в мощных силовых трансформаторах сталь должна иметь минимальные удельные потери и высокую индукцию в сильных полях. Применение стали в трансформаторах для автоматики и телефонии требует высокой проницаемости в слабых полях и при подмагничивании постоянным током. Хорошую штампуемость наряду с высокими магнитными свойствами должна иметь сталь, применяемая в мелких специальных электрических машинах. Двигатели и генераторы повышенных частот (от 400 до 25000 Гц и выше), а также различные трансформаторы в радиотехнических и радиолокационных установках требуют применения стали с особо высокой магнитной проницаемостью и малыми потерями. В этих случаях применяют ленты толщиной 0,05—0,20 мм вместо листов обычной толщины (0,27—0,50 мм). Для стали, применяемой в трансформаторах тока, важны высокие свойства в широком диапазоне величин индукции.  [c.547]

В дальнейшем была установлена возможность получения электретов из неполярных органических и даже не неорганических диэлектриков, в частности керамических. Необходимое для этого условие поляризации сводится к длительному воздействию сильного постоянного электрического поля при повышенной температуре. В сравнительно слабых поляризационных полях получаются при этом электреты с гетерозарядами, а в сильных — с гомозарядами. Плотность зарядов достигает обычно значений порядка 10 Кл/м , но при соблюдении некоторых специфических условий можно получить электреты с большей плотностью зарядов.  [c.42]

Первоначально электреты быди ш- лучены из органических воскообразных сильно полярных диэлектриков. Способ получения их заключался в охлаждении — отверждении размягченного или расплавленного диэлектрика при воздействии достаточно сильного постоянного электрического поля. Предполагалось, что электретное состояние определяется замороженной ориентацией диполей. Было установлено, что наведенный в электрете заряд является по существу результативным эффектом двух различных зарядов, появившихся вследствие электретной поляризации 1) гетерозарядов, противоположных по полярности зарядам электродов, создавших поляризующее поле при получении электрета 2) гомозарядов, совпадающих по полярности с поляризующим полем. Предполагалось, что гетерозаряды являются следствием замороженной дипольной поляризации, а гомозаряды — следствием проникновения зарядов в диэлектрик извне. Характерно, что при сравнительно слабых поляризующих полях, не превышающих 5 кв/см, обычно появлялись только гетерозаряды, а в сильных полях порядка 10—20 кв/см, наряду с гетерозарядами, появлялись и гомозаряды. В электретном состоянии на поверхности диэлектриков наблюдается определенная плотность зарядов. Со временем может происходить обращение зарядов, изменение полярности поверхностных зарядов, приводящее к изменению полярности внешнего электрического поля, создаваемого электретом.  [c.40]


Смотреть страницы где упоминается термин Слабое постоянное электрическое по. 4.2.3. Сильное постоянное электрическое поле : [c.50]    [c.101]    [c.272]    [c.272]    [c.27]   
Смотреть главы в:

Нелинейная ионизация атомов лазерным излучением  -> Слабое постоянное электрическое по. 4.2.3. Сильное постоянное электрическое поле



ПОИСК



Поле слабое

Электрическая постоянная

Электрическое поле



© 2025 Mash-xxl.info Реклама на сайте