Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термомагнитные Магнитные и электрические свойства

Расширенный набор независимых переменных позволяет анализировать перекрестные эффекты, возникающие при сочетании различных по своей природе процессов. В электрических и магнитных полях за счет взаимного влияния механических явлений, с одной стороны, и электрических или магнитных, с другой, возникают такие эффекты, как электрострикция, магнитострикция, пьезоэффект, магнитоупругий эффект и др. Сочетание термических и электрических (магнитных) процессов приводит к термоэлектрическим (термомагнитным) эффектам и соответствующим свойствам. Рассмотрим эти дополнительные возможности термодинамики на примере процессов магнитного охлаждения тел, лежащих в основе современных методов получения сверхнизких температур.  [c.162]


Температурная погрешность разных электроизмерительных приборов (гальванометров, счетчиков и др.) зависит от изменения магнитной индукции магнитопроводов и электрического со противления обмоток этих приборов. Эти погрешности могут быть уменьшены при применении магнитных шунтов из материалов, имеющих в диапазоне температур от —50 до - -50°С резкую зависимость магнитной индукции от температуры. При этом магнитный поток с изменением температуры распределяется между шунтом и основным постоянным магнитом так, что поток в последнем остается постоянным или меняется так, что компенсирует изменение электрического сопротивления обмотки прибора. Такие термомагнитные сплавы имеют точки Кюри в пределах от О до 100° С, что и обеспечивает сильное изменение магнитной проницаемости с изменением температуры, так как около точки Кюри имеет место сильное изменение магнитных свойств.  [c.356]

По электрическим свойствам все ферриты относятся к полупроводникам. Их применяют для магнитопрово-дов, работающих в слабых и сильных магнитных полях высокой частоты (до 100 МГц), и в импульсном режиме. Кроме радиотехники их также применяют для изготовления магнитных усилителей, сердечников трансформаторов и катушек индуктивности, деталей отклоняющих систем, статоров и роторов высокочастотных двигателей, сердечников быстродействующих реле, термомагнитных компенсаторов и т. д. Возможность применения ферритов в полях высокой частоты определяется главным образом их большим удельным электрическим сопротивлением, благодаря которому реактивное и тепловое действие вихревых токов получается незначительным даже у магнитопрово-дов сплошного сечения. По этой же причине индукция в ферритовых магни-топроводах может иметь даже большую величину, чем в магнитопроводах из  [c.189]

Сплавы прецизионные магнитно-мягкие — это ферромагнитные сплавы, характеризующиеся узкой петлей гистерезиса, они обладают высокой магнитной проницаемостью и малой коэрцитивной силой. Условно считается, что она не превышает 1000—1200 А/м. Сплавы используют в качестве сердечников магнитопроводов, а также магнитных экранов аппаратуры радиосвязи, радиолокации, автоматики и др. По основным магнитным, электрическим, механическим свойствам прецизионные магнитно-мягкие сплавы подразделяют на 12 фупп [195] сплавы с наивысшей магнитной проницаемостью в слабых полях сплавы с высокой магнитной проницаемостью и повышенным удельным электрическим сопротивлением сплавы с высокой магнитной проницаемостью и повышенной индукцией насыщения сплавы с прямоугольной петлей гистерезиса сплавы с высокой индукцией насыщения сплавы с низкой остаточной индукцией сплавы с повышенной деформационной стабильностью и износостойкостью сплавы с заданным температурным коэффициентом линейного расширения (ТКЛР) сплавы с высокой коррозионной стойкостью сплавы с высокой магнитострик-цией термомагнитные сплавы и материалы сплавы для работы на сверхвысоких частотах. Магнитные свойства магнитно-мягких сплавов определяются химическим составом, структурой и текстурой сплава после окончательной термической обработки. Некоторые свойства (намагниченность насыщения, температура Кюри) сравнительно слабо изменяются при небольших изменениях состава и обычно не зависят от условий изготовления и термической обработки. Другие характеристики, такие как проницаемость, коэрцитивная сила, потери на гистерезис, сильно зависят от этих факторов. Поэтому нормируемые ГОСТом и техническими условиями свойства  [c.548]


Достижения в теории ферромагнетизма изложены в ряде книг и обзоров, из которых в первую очередь необходимо отметить фундаментальные монографии советских уч-адых (Н. С. Акулов, Ферромагнетизм, ОНТИ, 1939 г. С. В. Вонсовский и Я. С. Шур, Ферромагнетизм, ГТТИ, 1948 г.). Следует, однако, указать, что вследствие широкого диапазона охватываемого материала в этих монографиях, а также имеющихся обзорах, естественно, не все вопросы могли быть изложены с достаточной полнотой. К такого рода вопросам необходимо отнести обширный круг явлений, связанных с влиянием ферромагнитного состояния и ферромагнитных процессов на различные физические (не магнитные) свойства вещества. К ним принадлежат такие явления, как магнитострикция, гальваномагнитные и термомагнитные эффекты, аномалии в тепловых, электрических, упругих свойствах ферромагнитных металлов.  [c.6]


Смотреть страницы где упоминается термин Термомагнитные Магнитные и электрические свойства : [c.220]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.257 , c.259 ]



ПОИСК



Электрические свойства



© 2025 Mash-xxl.info Реклама на сайте