Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм хрупкого межкристаллитного разрушения

Механизм хрупкого межкристаллитного разрушения  [c.53]

Этот механизм разрушения (рис. 2.31) свойствен многим металлам и сплавам с разными типами кристаллической решетки. В сталях механизм межкристаллитного разрушения действует в условиях коррозионного растрескивания под напряжением, водородной и тепловой хрупкости, ползучести и т.д. Из самого названия следует, что механизму хрупкого межкристаллитного разрушения соответствует ситуация распространения хрупкой трещины по границам кристаллитов. Чаще всего при использовании названия этого механизма подразумевают случаи распространения хрупкой трещины по границам каких-либо структурных элементов без уточнения, по каким именно. Это особенно очевидно для закаленных и закаленно-отпущенных сталей. Хрупкая трещина может проходить по границам бывших зерен аусте-нита, границам пакета реек мартенсита и (или) границам реек (субзерен) и пластин мартенсита.  [c.53]


Относительно механизма образование горячих трещин в сварных швах большинство исследователей сходятся на том, что эти трещины образуются под действием напряжений, возникающих в процессе кристаллизации, когда шов находится в твердо-жидком состоянии. Прослойки между кристаллами обладают в определенном интервале температур весьма низкой пластичностью и поэтому по ним образуются трещины межкристаллитно-го характера. Интервал температур, в котором металл претерпевает хрупкое межкристаллитное разрушение, принято называть температурным интервалом хрупкости.  [c.134]

Рассматривая в совокупности изложенные выше представления о соответствующем балансе между электрохимической активностью и пассивностью, можио считать, что локализованная коррозия возникает различными путями и является следствием проявления ряда различных механизмов, вызывающих коррозионное растрескивание. Если структура и состав сплава таковы, что в нем имеются непрерывные области сегрегации или выделений (обычно по границам зерен), отличающиеся по электрохимическим характеристикам от матрицы, тогда потенциальная чувствительность к межкристаллитной коррозии (МКК) может быть под действием механических напряжений реализована в межкристаллитное разрушение. В том случае, когда предварительно существующие активные участки находятся в пассивном состоянии, тогда деформация может активизировать их за счет разрушения защитной пленки и, возможно, за счет растворения возникающих ступенек сдвига, обладающих повышенной электрохимической активностью. В последнем случае решающая роль напряжений или деформации проявляется для таких сплавов, которым присуща недостаточная пластичность и склонность к хрупкому разрушению. Энергия, необходимая для хрупкого разрушения, может быть уменьшена за счет или адсорбции специфических компонентов, или образования хрупких фаз в вершине трещины, или внедрения водорода в решетку впереди вершины развивающейся трещины. Предполагают, что эти три различных механизма коррозионного растрескивания должны рассматриваться как протекающие непрерывно с постепенным переходом от одного механизма к другому, поскольку постепенно над коррозионным процессом начинают преобладать процессы, обусловленные действием напряжений или деформации. Переход от одного механизма к другому может быть следствием изменения или характеристик самого сплава, или условий внешней среды.  [c.231]

При полностью хрупком разрушении элементов металлических конструкций, когда величина пластической деформации не превышает и десятых долей процента, шевронный рельеф, как правило, на поверхности хрупкого разрушения не образуется. Это же свойственно и случаю, когда сталь разрушается по межкристаллитному механизму (см. п. 2.3.2).  [c.45]


Доля других видов разрушения в изломе в пределах зоны II (кристаллографический сдвиг, ямочный) после проведения отпуска изменяется незначительно. В зоне III после отпуска доля участков поверхности разрушения сварного шва, покрытых усталостными бороздками, резко возрастает (на порядок) и приближается к доле межкристаллитного разрушения для неотпуш енного металла (табл. 5.5). По данным проведенных исследований можно сделать вывод, что несовпадение макро- и микроскопической скоростей роста треш,ины в сварном шве обусловлено распространением трещины не только по усталостному, но и по межкристаллитному механизму разрушения. Признаков хрупкого транскристаллитного скола в зонах II и III изломов не обнаружено.  [c.260]

Согласно существующим представлениям, механизм хрупкого растрескивания зависит от того, что происходит с атомами, расположенными на границах кристаллов. По мнению Паркинса [50], это явление вызвано искаженной структурой феррита в области границ зерен. Хехт, Партридж, Шредер и Уэрл в Справочнике коррозиониста Улига [12] утверждают, что атомы на границе зерен принадлежат одновременно кристаллам различной ориентации и удерживаются в этом положении за счет атомных связей, искаженных по сравнению с их нормальным направлением. Удаление таких атомов из их напряженного состояния осуществляется поэтому значительно легче, чем из середины кристалла. Это меж-кристаллитное растрескивание может вызываться концентрированными растворами щелочей. Были предложены также и другие теории, связывающие это явление с водородом [50, 51], различного рода осадками [50], окисной пленкой [51], коллоидами [52] и с влиянием механических деформаций и деформации по границам зерен [50]. Обычно в трещинах обнаруживаются окислы. Кроме того, в них могут присутствовать отложения солей. Имеется сообщение относительно более быстрого образования трещин в присутствии силиката. Согласно предположениям, высказанным Акимовым [53], взаимодействие щелочи с железом приводит к образованию феррита натрия МагРеОг и водорода. Далее коррозия протекает вдоль границ зерен и усиливается внутренними напряжениями, которые ослабляют связи между зернами по нарушенным границам. При этом появляются трещины, вода проникает в ослабленный металл, что создает условия для дальнейшего развития межкристаллитной коррозии. Помимо этого, усилению разрушения может благоприятствовать абсорбция металлом выделяющегося водорода.  [c.38]

При реализации механизма замедленного разрушения поверхность разрушения приобретает межкристаллитное строение. Отчетливо выявляется характерная огранка поверхности разрушения (рис. 5.68), возникающая при распространении хрупких трещин по границам кристаллитов. Часто видны трещины уходящие в глубь металла. Такая же картина разрушения выявлена при изучении влияния водорода и приложенного напряжения на высокопрочную (а 2 = 1200 МПа) сталь 38ХНЗМФА в закаленно-отпущенном состоянии [187]. Испытания на замедленное разрушение проводили при комнатной температуре, нагружая стандартные призматические с острым надрезом (угол раскрытия 45°, радиус основания надреза р = 0,22 мм, наведенная усталостная трещина) образцы с постоянно действующим изгибающим моментом (по схеме чистого изгиба). Источником водорода служил  [c.297]


Смотреть страницы где упоминается термин Механизм хрупкого межкристаллитного разрушения : [c.289]    [c.145]    [c.9]   
Смотреть главы в:

Диагностика металлов  -> Механизм хрупкого межкристаллитного разрушения



ПОИСК



Механизм хрупкого разрушения

Механизмы разрушения

Разрушение хрупкое



© 2025 Mash-xxl.info Реклама на сайте