Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изопараметрические конечные элементы пластины

Изопараметрические конечные элементы пластины  [c.231]

Для идеализации использовались изопараметрические конечные элементы пластины первого порядка (см. 7.3). Схе-  [c.279]

Это как раз задача о закрепленной пластине с v = 1. Таким образом, предельная функция не зависит от коэффициента Пуассона, входяш его в краевые условия. Сходимость есть, но почти всегда к неверному решению. Соответствующие трудности для расчетов методом конечных элементов представлены в [Р1] и обсуждаются в [Б 10]. С другой стороны, мы предчувствуем успех изопараметрического метода, если аппроксимация границы Г по крайней мере кус очно квадратична в этом случае кривизна границы сходится. Если же предположить, что главное условие и = 0 заменяется в граничных узлах условием Ф = d /dt = О, использовать пространство Z3 (см. разд. 1.9) и взять производную d/dt вдоль истинной границы Г, то сходимость можно ожидать даже на многоугольнике. В таком изложении, однако, требуемой теории не существует.  [c.227]


Что касается аппроксимации задач четвертого порядка на областях с криволинейными границами, то упомянем работу Мэнсфилда [6], где рассматривается, кроме того, эффект численного интегрирования. Его подход аналогичен использовавшемуся у Сьярле, Равьяра [3] для задач второго порядка. Криволинейные изопараметрические конечные элементы нового типа предлагаются Робинсоном [1]. В случае задачи о свободно опертой пластине (см. упр. 1.2.6) упомянем парадокс Бабушки (см. Бабушка [1], а также Биркгоф [1]) В противоположность задачам второго порядка нельзя получить сходимость аппроксимации, если криволинейная граница заменяется ломаной. Это происходит потому, что краевое условие А -(1—а)3 = 0 на Г (которое включается в вариационную формулировку) заменяется тогда на краевое условие ду и — О.  [c.368]

Формулы (7.2) —(7.5) можно взять за основу при выводе жесткостных характеристик конечных элементов, оеуществт ляя при этом независимую аппроксимацию функций Uz, Х и 9у по их узловым значениям. Как следует из (7.1), совместность перемещений обеспечивается, если каждая из этих функций непрерывна на границах между элементами. Так же как и в случае плоской задачи теории упругости, выполнить это условие можно, например, с помощью изопараметрической формулировки конечных элементов. Следовательно, здесь открываются широкие возможности для введения конечных элементов произвольной формы, в том числе криволинейных. Но применение подобных элементов к расчету тонких пластин до последнего времени было ограниченным из-за чрезмерной жесткости элементов, которая обусловлена ложными деформациями поперечного сдвига и появляющимися при чистом изгибе пластины. В работе [38] показано, что и в случае изгиба пластин эффективным средством борьбы с ложными деформациями поперечного сдвига является использование минимально допустимого порядка интегрирования соответствующих членов при вычислении матрицы жесткости элемента. Несколько конечных элементов, полученных таким способом, представлено в следующем параграфе. Они могут успешно использоваться при расчете как тонких, так и сравнительно толстых пластин.  [c.230]


Смотреть страницы где упоминается термин Изопараметрические конечные элементы пластины : [c.201]    [c.252]   
Смотреть главы в:

Метод конечных элементов в задачах строительной механики летательных аппаратов  -> Изопараметрические конечные элементы пластины



ПОИСК



Изопараметрические конечные элементы

Конечный элемент

Элемент изопараметрический

Элементы для пластин



© 2025 Mash-xxl.info Реклама на сайте