Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вычисление скорости накачки

Вычисление скорости накачки  [c.151]

Представленный выше расчет является довольно грубым, поскольку он основан на предположении о том, что электрон теряет при столкновении часть своей энергии, равную б. Хотя данное условие выполняется при упругих столкновениях с атомами (в этом случае b = 2mfM), для неупругих столкновений это неочевидно [электрон-электронные столкновения не играют никакой роли в уравнении энергетического баланса (3.36), поскольку они просто перераспределяют скорости электронов без изменения их средней энергии]. Следует заметить, что упругие столкновения в действительности происходят намного чаш,е, чем неупругие (сечение упругих столкновений обычно много больше сечения неупругих столкновений). Однако доля энергии, теряемая при упругих столкновениях, очень мала. В самом деле, если бы упругие столкновения были основным механизмом охлаждения электронов, то основная часть энергии разряда тратилась бы на нагрев атомов, а не на их возбуждение, и разряд не был бы столь эффективным для накачки лазера. Другая причина, почему наши вычисления нельзя считать адекватными, состоит в предположении о максвелловском характере распределения, что не выполняется на практике [14]. Тем не менее в лазерах на нейтральных атомах и в ионных газовых лазерах отклонение от максвелловского распределения невелико, и в этих случаях в расчетах нередко используют максвелловское распределение. Однако в молекулярных лазерах, генерируюш,их на колебательных переходах, газ ионизован очень слабо и средняя энергия электронов мала Е ж 1 эВ, поскольку необходимо возбудить только колебательные состояния) по сравнению с энергией (10—30 эВ), необходимой для лазеров на нейтральных атомах и ионных газовых лазеров. Соответственно следует ожидать.  [c.145]


Для расчёта полученных интегралов возьмём отношение N/Ni = 3000, что соответствует 0,05% Сг2 Оз в AI2O3. Значения скорости охлаждения от мощности накачки для различных областей температур приведены в табл. 2.1. Результаты вычислений для значений температур от 300 К до 10 К приведены на рис. 2.4.  [c.86]

Вынужденное излучение представляет собой одно из наиболее интересных явлений, которые могут возникать при взаимодействии электромагнитного излучения с веществом. Это явление заключается в том, что фотон взаимодействует с электроном и, прежде чем поглотиться, индуцирует излучение идентичного фотона. Лазерный эффект получается при обеспечении обратной связи, т. е. возвращения части этого излучения в лазер. Теория лазера любого типа может быть развита из соотношений Эйнштейна [1] для скоростей переходов при поглощении и при вынужденном и спонтанном излучении. Однако характер вынужденного излучения в полупроводниках отличается от характера вынужденного излучения в газовых лазйрах или в других твердотельных лазерах, что приводит к некоторому отличию в терминологии. В полупроводниках оптические переходы происходят между распределенными совокупностями энергетических уровней в зонах, в то время как в других лазерах переходы происходят обычно между дискретными энергетическими уровнями. Кроме того, в инжекционном лазере электроны тока накачки преобразуются с высокой квантовой эффективностью непосредственно в фотоны В этой главе выводятся выражения, необходимые для вычисления коэффициента усиления в полупроводнике, а затем находятся и обсуждаются соотношения между коэффициентом усиления, потерями и плотностью порогового тока.  [c.132]


Смотреть страницы где упоминается термин Вычисление скорости накачки : [c.276]    [c.279]   
Смотреть главы в:

Принципы лазеров  -> Вычисление скорости накачки



ПОИСК



Л <иер накачкой

Накачки скорость



© 2025 Mash-xxl.info Реклама на сайте