Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергетический интеграл и коэффициенты интенсивности напряжений

В методических указаниях РД 50-260-81 и ГОСТ 25.506-85 [3, 9], посвященных характеристикам трещиностойкости при статическом нагружении, рекомендуется определение силовых, деформационных и энергетических критериев разрушения. К силовым критериям разрушения относятся критические значения коэффициентов интенсивности напряжений К ,, К,(., К . , пределы трещиностойкости и критические напряжения а к деформационным — критическое раскрытие трещин 5 . и коэффициенты интенсивности деформаций К . к энергетическим — удельная энергия (работа) разрушения а ., удельная энергия продвижения трещины на единицу площади О и критическое значение З-интеграла 2с- В качестве основных рекомендуются К1(. и К(..  [c.16]


Для описания условий разрушения на стадии развития трещин при циклическом нагружении получили широкое распространение критерии линейной и нелинейной механики разрушения. В упругой области или при наличии малых пластических зон в вершине трещины наиболее широко используются силовые (коэффициент интенсивности напряжений п, щ) и энергетические (энергия образования единицы свободной поверхности у или энергия продвижения трещины на единицу длины б), а в случае развитых пластических деформаций (размер пластической зоны в вершине трещины соизмерим с ее длиной) применяются деформационные (критическое раскрытие трещины, предельная деформация в вершине трещины, коэффициент интенсивности деформаций, размер пластической зоны) и энергетические (/-интеграл) критерии.  [c.26]

При исследовании кинетики трещин статического и малоциклового высокотемпературного разрушения используются, как показано в разд. 1.3, основные критерии и методы линейной и нелинейной механики однократного разрушения. К числу этих критериев относятся силовые (коэффициенты интенсивности напряжений К с), деформационные (критическое раскрытие трещин бс> размер пластической зоны г ) и энергетические (энергия продвижения трещины у , Ge и /с — интеграл).  [c.218]

Энергетический интеграл и коэффициенты интенсивности напряжений  [c.365]

Значения компонентов энергетического интеграла достаточны для конструирования критерия разрушения, они могут являться конечной целью расчета. В задачах линейной механики разрушения в ряде случаев удобно оперировать значениями коэффициентов интенсивности напряжений Ки К и К п- Согласно работе [14], связь между коэфициентами интенсивности напряжений и компонентами /-интеграла имеет вид  [c.367]

Приведем некоторые результаты расчета параметров механики разрушения методом эквивалентного объемного интегрирования. Первый пример демонстрирует возможность расчета коэффициентов интенсивности напряжений всех трех типов энергетическим методом. Затем даны результаты упругопластических расчетов энергетического интеграла для полуэллиптических поверхностных трещин.  [c.374]

Отметим, что значительные преимущества концепции энергетического J-интеграла по сравнению с концепцией коэффициента интенсивности напряжений обусловлены менее жесткими требованиями к размерам образца для достоверного определения J/ - При этом в случае маломасштабного течения у вершины трещины допускается расчет вязкости разрушения Kj по формуле (2.4.26).  [c.144]


Таким образом, полученные формулы позволяют более широко использовать концепцию энергетического интеграла как при экспериментальной оценке трещиностойкости материалов, так и в расчетах на прочность деталей машин и элементов конструкций, поскольку оказалось, что для определения J-интеграла достаточно знать коэффициент интенсивности напряжений, приложенную нагрузку, длину трещины и механические свойства материала ( , сг и ш).  [c.212]

Отмеченные ограничения возникают в результате стремления расширить области применения основных положений линейной механики разрушения на условия упругопластического деформирования и разрушения. Однако возможности такого перехода связаны с уровнем номинальной нагруженности рассчитываемых элементов и влиянием эксплуатационных факторов (температура, скорость нагружения и Т.Д.). Очевидно, что в этих условиях необходим анализ закономерностей, характеристик и критериев упругопластического деформирования и разрушения. Важным аспектом данного анализа является оценка влияния эффектов объемности напряженного состояния на определяемые характеристики трещиностойкости и его учет в уравнениях предельного состояния. Предварительные результаты, полученные в этом направлении, привели к необходимости использовать в расчетных соотношениях эффективный предел текучести в условиях, отличных от линейного однородного напряженного состояния. Наиболее успешно такой подход реализован в отношении деформационного (коэффициент интенсивности деформаций К[(,(,) и энергетического (Л-интеграл) критериев упругопластического разрушения [14, 30-32].  [c.22]

Однако, при нагружении конструкций из малоуглеродистых, низко- и среднелегированных сталей, содержащих плоскостные дефекты, имеет место, как правило, развитое пластическое течение в вершине данных концентраторов (зона АВ на рис. 3.2). В общем случае это снижает опасность хрупких разрушений, так как часть энергии нагружения расходуется на образование пластических зон. В данных зонах напряжения и деформации уже не контролируются величиной коэффициентов интенсивности напряжений, а определяются из соотношений теории пластичности. Дпя некоторого упрощения описания процесса разрушения в механике разрушения вводят критерии, описывающие поведение материала за пределом упругости 5 — критическое раскрытие трещины и — критическое значение независящего от контура интегрирования некоторого интеграла. Деформационный критерий 5 основан на раскрытии берегов трещины до некоторых постоянных критических значений для рассматриваемого материала. На основе контурного Jj,-интеграла представляется возможность оценить момент разрушения конструкций с трещинами в упругопластической стадии нагружения посредством определения энергии, необходимой для начала процесса разрушения. При этом полагается, что критическое значение энергетического параметра, предшествующее разрушению, является характеристикой материала. Существуют также и другие характеристики разрушения, которые не получили широкого распространения на практике. Например, сопротивление микросколу [R ]. сопротивление отрыву, угол раскрытия вершины трещины, двухпараметрический критерий разрушения Морозова Е. М. и др.  [c.81]

Условия распространения трещины определяются кинетикой напряженного и деформированного состояний в вершине трещины при заданных условиях нагружения. Напряженное и деформированное состояния в вершине трещины могут быть охарактеризованы коэффициентами интенсивности напряжений К и деформаций К1е., определяемыми соответственно зависимостями (6.1) и (1.88). При этом скорость развития трещин может быть описана, как было показано ранее (см. 1.3), либо через силовые (коэффициент интенсивности напряжений ЛГ1), либо через деформационные (критическое раскрытие трещины б,., размер пластической зоны номинальная деформация е , максимальная деформация в вершине трещины ётах, Коэффициент интенсивности деформаций Ки)г либо через энергетические критерии (энергия образования единицы свободной поверхности у, энергия продвижения трещины на единицу длины С и /-интеграл). Кроме того, для описания скорости развития трещины, особенно если речь идет о циклическом нагружении, могут быть привлечены представления о предельно накопленном повреждении в вершине трещины, которое рассчитывается по соответствующим критериям, например по критериям в деформационных терминах, учитывающих накопление усталостных, квазистатических повреждений и повреждений, определяемых работой остаточных микронапряжевий (см. зависимости (6.8) и (6.10)).  [c.238]


Методы экспериментального определения характеристик тре-щиностойкости в условиях упругопластического деформирования требуют схематизации накопленного опыта испытаний. В этой области значительное развитие и наиболее широкое практическое приложение среди критериев нелинейной механики разрушения получили раскрытие трещины [11-13], коэффициент интенсивности деформаций в упругопластической области [14], энергетический З-интеграл [15-17] и предел трещиностойкости 1 [18-19], позволяющие анализировать закономерности разрушения, напряженно-деформированное состояние в вершине трещины на стадии ее инициации при значительных пластических деформациях и общей текучести материала, а также проводить оценку предельных состояний элементов конструкций с трещинами.  [c.20]


Смотреть страницы где упоминается термин Энергетический интеграл и коэффициенты интенсивности напряжений : [c.376]    [c.328]   
Смотреть главы в:

Вычислительные методы в механике разрушения  -> Энергетический интеграл и коэффициенты интенсивности напряжений



ПОИСК



Интенсивность напряжений

Коэффициент интенсивности

Коэффициент интенсивности напряжени

Коэффициент интенсивности напряжений

Коэффициент интенсивности напряжений напряжений

Коэффициент по напряжениям

Коэффициент энергетический



© 2025 Mash-xxl.info Реклама на сайте