Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связь между случайными величинами. Коэффициент корреляции при нормальном распределении величин

Зависимость между случайными величинами X и У проявляется в том, что условная вероятность появления, например, yj при реализации события отличается от безусловной вероятности, т.е. влияние одной случайной величины на другую характеризуется условным распределением одной из них при фиксированном значении другой. Практическое использование коэффициента корреляции при количественной оценке степени взаимосвязанности (зависимости) двух случайных величин, как правило, справедливо, когда закон распределения нормальный. В этом случае из равенства = О следует независимость случайных величин. Для оценки меры зависимости двух произвольных случайных величин использовать нельзя, так как даже при функциональной связи двух величин (однозначной зависимости) корреляционный момент может быть равен нулю, т.е. понятия некоррелированности и независимости не эквивалентны.  [c.48]


Ряд указанных исследований проводился на электродинамических или электромагнитных вибраторах без обратной связи и без надлежащей стабилизации параметров случайного процесса, поэтому результаты этих исследований не могут считаться вполне достоверными. Появление электрогидравлических машин с обратной связью позволило проводить усталостные испытания при случайном нагружении с обеспечением заданных параметров процесса и его стационарности. Однако соответствующих результатов имеется пока ограниченное количество. Рассмотрим в качестве примера результаты работы Пфайфера 193], в которой при регулярном и случайном нагружении испытывались на элек-трогидравлической машине с обратной связью при растяжении-сжатии плоские образцы с надрезами а = 2,44) из трех типов углеродистых сталей. На рис. 5.8 представлены четыре типа использованных при испытании случайных процессов, характеризующихся различными значениями г иГь Здесь г — коэффициент корреляции между минимумами и непосредственно следующими за ними максимумами процесса [55], получающийся при статистической обработке данных, представленных в корреляционной таблице (см. рис. 4.6) i — фактор нерегулярности процесса (обозначение и название по данным работы [93]), представляющий собой отношение среднего числа пересечения процессом нулевой линии к среднему числу Экстремумов [величина i совпадает с X, определяемой соотношением (4.40) ]. Процесс F1 является узкополосным процессом, для которого все методы схематизации дают практически одинаковые результаты процесс F4 — достаточно широкополосен, процессы F2 и F3 имеют промежуточный характер. Применяли схематизацию процесса по методу экстремумов. Распределение экстремумов, максимумов и минимумов процессов было близким к нормальному.  [c.179]


Смотреть главы в:

Статистические методы обработки результатов механических испытаний  -> Связь между случайными величинами. Коэффициент корреляции при нормальном распределении величин



ПОИСК



Величины Распределени

Величины Распределение

Величины случайные — Распределения

Корреляция

Коэффициент корреляци

Коэффициент корреляции

Коэффициент распределения

Коэффициенты нормальные 176 — Коэффициенты

Коэффициенты связи

Нормальное распределение

Связь между

Связь между коэффициентами

Связь нормальная

Случайная величина

Случайная распределения

Случайность



© 2025 Mash-xxl.info Реклама на сайте