Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плавление и кипение в зависимости от давления

ПЛАВЛЕНИЕ И КИПЕНИЕ В ЗАВИСИМОСТИ ОТ ДАВЛЕНИЯ  [c.309]

Металлы в зависимости от условий (температуры, давления) могут находиться в трех состояниях газообразном, жидком и твердом. Химически чистые металлы при нагревании переходят в жидкое состояние ири строго определенной температуре, называемой температурой плавления, а из жидкого — в газообразное (парообразное) при температуре, называемой температурой кипения. Температуры плавления металлов различны и колеблются от —38,9° С (для ртути) до -[-3410° С (для вольфрама).  [c.8]


Необходимость выполнять измерение давления увеличивает сложность аппаратуры для реализации точки кипения по сравнению с аппаратурой для тройных точек. В процессе измерения давления качество регулирования температуры должно быть предельно высоким. С этой целью применяется относительно массивный медный блок, в котором размещены термометры и конденсационная камера. С другой стороны, реализация тройной точки основывается на ее собственной температурной стабильности в процессе плавления и, следовательно, относительно легком адиабатическом калориметре. Наклон кривой температурной зависимости давления насыщенных паров водорода возрастает от 13 Па мК при 17 К до 30 Па-мК- при 20,28 К- Поэтому для строгого определения точки 17 К измерению давления должно быть уделено больше внимания. Криостат должен быть сконструирован так, чтобы самая его холодная точка находилась в конденсационной камере и ни в коем случае не на манометрической трубке, связывающей камеру с манометром. Необходимо также введение поправки, обусловленной гидростатическим давлением газа в системе измерения давления. Она пропорциональна плотности газа и, следовательно, обратно пропорциональна температуре [см. уравнения (3,30) и (3.31) гл. 3,  [c.158]

Зависимость температуры кипения от давления для различных веществ дана в табл. 6 и 7, в табл. 8 приведены температуры плавления сплавов, в табл. 9 — огнеупорных материалов.  [c.66]

Изменение темп-ры фазового перехода (кипения, плавления и др.) при бесконечно малом изменении давления Определяется Клапейрона—Клаузиуса уравнением. Графики, изображающие зависимость одних термодинамич. переменных от других в условиях Ф. р., наз. линиями (поверхностями) равновесия, а их совокупность — диаграммой состояния. Линия Ф. р. может либо пересечься С др. линией равновесия (тройная точка), либо закончиться критической точкой.  [c.269]

Зависимость изменения свободной энергии образования окислов от температуры приведена на рис. 31. Изменение свободной энергии окислов отнесено к 1 молю кислорода, связывающего соответствующее количество металла при давлении газовой среды 1 ат. В точках плавления (п) и кипения (к) окислов кривые претерпевают излом.  [c.62]

Вода обладает многими специфическими свойствами, имеющими ярко выраженный аномальный характер. Все они - следствие особенностей структуры воды и развитости в ней водородных связей. Плавление твердой воды - льда - сопровождается не расширением, а сжатием, а при замерзании воды объем льда значительно увеличивается. Как известно, подавляющее большинство веществ при плавлении расширяется, а при затвердевании, наоборот, уменьшает свой объем. Аномально также влияние температуры на изменение плотности воды при росте температуры от 273 до 277 К плотность увеличивается, при 277 К она достигает максимальной величины, и только при дальнейшем повышении температуры плотность воды начинает уменьшаться. Зависимость теплоемкости воды от температуры имеет экстремальный характер. Минимальная теплоемкость достигается при температуре 308,5 К и вдвое превышает теплоемкость льда, а при плавлении других твердых тел тегаюемкость изменяется незначительно. Удельная теплоемкость воды аномально велика, она равна 4,2 Дж/(г К). Вязкость воды в отличие от вязкости других веществ растет с повьцнением давления в интервале температур от 273 до 303 К. Вода имеет температуру плавления и кипения, значитель-  [c.186]


В 1889 г. 1-я ГКМВ утвердила принятую МКМВ в 1887 г. шкалу водородного газового термометра постоянного объема, основанную на реперных точках плавления льда (О °С) и кипения воды (100 °С) и получившую название нормальной водородной шкалы в качестве международной практической шкалы. В описании шкалы указывалось начальное давление заполнения (1 м рт. ст. при о °С) и никаких поправок на отклонение свойств водорода от идеального газа не вводилось. По этой. причине шкала была названа практической . Она, очевидно, и не была термодинамической, поскольку наблюдалась зависимость результатов измерений от свойств рабочего газа. В гл. 3 будет подробно рассмотрено, каким образом отклонения от свойств идеального газа учитываются в газовой термометрии. Здесь же следует подчеркнуть, что для газового термометра постоянного объема, калиброванного в двух точках и примененного для интерполяции между ними, как это сделал Шаппюи, погрешности, вызванные неидеальностью газа, скажутся лишь в меру изменения самой неидеальности между реперными точками. Для водорода эти изменения от О до 100 °С неве-  [c.39]

Созданию термодинамич. Т. ш. предшествовало применение газового термометра, градуированного по шкале Цельсия, термометрич. свойством в нём служило давление Ри При те.мп-рах и i2 термометрич. свойство x,=pi и X2=Pi, по совр. данным, отношение pilp 1 = 1,3661 и р = 0 при /= —273,15 С. При построении термодинамич. Т. in. У. Томсон (лорд Кельвин, 1850) сохранил размер единицы темп-ры таким же, как по Т. ш. Цельсия, положив, что разность темп-р кипения воды при атм. давлении и плавлении льда также равна 100. Второе допущение, определившее зависимость темп-ры от термометрич, свойства, состояло в том, что отношение кол-ва теплот и темп-р в цикле Карно равно отношению темп-р QilQ -T2lTi. В определённой термодинамич. Т. ш. Кельвина наинизшая возможная темп-ра, соответствующая т) = I в цикле Карно, имеет Значение Tj = 0 (абс. нуль), а в газовом термометре, заполненном идеальным газом, р = 0 при Тх=Ч. Второй реперной точкой термодинамич. Т. ш., темп-ра по к-рой измеряется в кельвинах (К), служит точка плавления льда при атм. давлении 7 2 = 273,15 К. Связь значений темп-ры по термодинамич. Т. ш. Т (К) и по газовому термометру, градуированному по шкале Цельсия, t С описывается ф-лой  [c.63]

Бромистая сурьма ЗЬВгз кристаллизуется в виде бесцветных ромбических кристаллов. Ее структура олиса-на в 1-4 гл. 1. Соль плавится при температуре 94° С и кипит три атмосферном давлении при температуре 280° С. Зависимость температуры кипения от давления приведена в та бл. 3-7. Удельный вес соли в твердом состоянии равен 4 148 кг/м , теплота плавления 9,76 ккал1кг.  [c.68]

Температуру измеряют различными приборами жидкостными и газовыми термометрами, термоэлектрическими пирометрами (термопарами), оптическими пирометрами, в которых используется зависимость излучения тела от температуры и длины волны, и т. д. В практике измерения температуры распространение получили различные температурные шкалы—Иельсия, Фаренгейта, Реомюра, Ренкина. Наиболее употребительной является температурная шкала Цельсия, в которой интервал температур от точки плавления льда до точки кипения воды при атмосферном давлении разбит на сто равных частей, называемых градусами (°С).  [c.10]

Методика исследования, использованная в работах Битти и соавторов [15, 16, 17], состоит в следующем. Предварительно взвешенную порцию этана помещали в стальную бомбу. Изменяли и измеряли плотность, вводя в бомбу или удаляя из нее известный объем ртути, для чего использовали тер-мостатируемый (7 — 300 К) ртутный насос. Температура и давление измерены на достаточно высоком уровне платиновым термометром сопротивления и поршневым манометром. В начале и в конце каждой серии измерений термометр калибровали по точкам плавления льда, кипения воды и серы. Особенно тщательно воспроизводили точку 100 °С, ежедневно проверяли нулевую точку термометра (Но) и в случае необходимости вводили поправку. Максимальное расхождение в показаниях термометра при калибровках составляло 1 мК. С учетом отклонений от Международной практической шкалы (2 мК) суммарная погрешность измерения температуры изменялась от 0,01 К при 273 К до 0,02 К при 523 К Поршневой манометр калибровали по давлению паров двуокиси углерода при 0°С (3,4857 МПа). Постоянная манометра оставалась неизменной в течение года в пределах 0,01 %. Погрешность измерения давления, по оценке авторов, не превышала 0,05 %. Погрешность измерения массы этана взвешиванием — не более 0,01 %. При определении рабочего объема камеры учитывали массу ртути, зависимость ее плотности и объема стальной бомбы от температуры и давления. Суммарную погрешность бд авторы оценили в 0,1 %.  [c.7]


В табл. 3-7 приведены опытные данные [Л. 66] по зависимости давления насыщенных па р01В от температуры для изо- и анизодесмичеюких теплоносителей — четыреххлористого титана и компонент сплавов СС-1 и СС-2. Если предположить, чтО для этих сплавов справедлив закон Рауля, то, используя данные та бл. 3-7 и уравнение (3-6), можно вычислить упругость паров в интервале температур от плавления аплава до его кипения при атмосферном давлении.  [c.134]


Смотреть страницы где упоминается термин Плавление и кипение в зависимости от давления : [c.67]    [c.171]    [c.286]    [c.90]    [c.68]    [c.95]   
Смотреть главы в:

Физические величины. Справочник  -> Плавление и кипение в зависимости от давления



ПОИСК



Зависимость Ср от давления

Кипение

Плавление

Сыр плавленый



© 2025 Mash-xxl.info Реклама на сайте