Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обратимость теоремы Лагранжа

С другой стороны, то, что известные законы обратимых процессов могут быть фактически выражены в форме уравнений Лагранжа, а следовательно, и в форме теоремы минимальности кинетического потенциала, я доказал в моих статьях о статике моноциклических движений ). Но при этом обнаруживается, что температура, которая измеряет интенсивность термического движения, входит в функцию, подлежащую интегрированию, в значительно более сложной форме, чем та, в которой скорости входят в выражение кинетической энергии весомых систем. В вышеупомянутых статьях я показал, что подобные формы при известных ограничивающих предположениях могут возникать путем исключения некоторых координат и для систем весомых масс, так что появление таких, более сложных форм не находится в противоречии с возможностью применения лагранжевых уравнений движения. Однако, если хотят изучать общие свойства систем, подчиняющихся принципу наименьшего действия, необходимо отбросить старое, более узкое предположение, согласно которому скорости входят только в выражение живой силы и притом в форме однородной функции второй степени надо исследовать, как будет обстоять дело, если Н есть функция любого вида от координат и скоростей.  [c.432]


Это утверждение связано с общей теоремой, принадлежащей Э. Нетер любому непрерывному обратимому преобразованию координат, при котором функция действия S (см. гл. С) данной гамильтоновой системы остается инвариантной, соответствует первый интеграл уравнений Лагранжа этой системы. Функция действия S = j L-di отражает, естественно, инвариантные свойства лагранжиана. См.  [c.62]

Теорема Нетер в наиболее простом случае сводится к утверждению о том, что любому непрерывному обратимому преобразованию координат, при котором функция действия данной гамильтоновой системы остается инвариантной, соответствует первый интеграл уравнений Лагранжа этой системы [31].  [c.456]

Необходимо отметить, что устойчивость стационарного движения может быть осуществлена и при отсутствии минимума потенциальной энергии (за счет гироскопических сил). Поэтому распространить теоремы Ляпунова и Четае-ва об обратимости теоремы Лагранжа на стационарное движение нельзя. Однако для гироскопически несвязанной системы справедлива следующая теорема, являющаяся перефразировкой теоремы Четаева об обратимости теоремы Лагранжа.  [c.88]

Теорема Лагранжа определяет только достаточные условия устойчивости равновесия консервативной системы если нотенциальиая анергия имеет в положении изолированного равновесия минимум, то равновесие устойчиво. Ляпунов первый поставил вопрос об обратимо-ти теоремы Лагранжа, а именно моя но ли утверждать, что при отсутствии минимума потенциальной энергии равновесие будет неустойчивым Ему принадлежат следующие две теоремы, которые приводятся здесь без доказательств (см. 135]).  [c.81]


Смотреть страницы где упоминается термин Обратимость теоремы Лагранжа : [c.11]    [c.88]    [c.149]   
Смотреть главы в:

Введение в теорию устойчивости движения  -> Обратимость теоремы Лагранжа



ПОИСК



Обратимость

Теорема Лагранжа



© 2025 Mash-xxl.info Реклама на сайте