Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые особые случаи пересечения поверхностей

Выше предполагалось, что состояние равновесия, появляющееся на периодическом движении, простое. Рассмотрим теперь случай, когда это состояние равновесия сложное. Придерживаясь нашего принципа общности, оно должно быть таким, чтобы этой возможности в пространстве параметров отвечала бифуркационная поверхность размерности на единицу меньше, чем размерность пространства параметров, т. е. бифуркационная поверхность, отвечающая бифуркации общего типа. Из этого следует, что сложная особая точка должна быть простейшей и ей должна отвечать в пространстве параметров некоторая поверхность. В сколь угодно малой близости от нее эта сложная точка должна превратиться в простую или исчезнуть. Общие случаи превращения простых точек в сложные нам известны. Эти превращения происходят на поверхностях и /V,,-Поверхность не подходит, так как наличие у соответствующего ее точкам сложного состояния равновесия двоякоасимптотической траектории может быть лишь при выполнении некоторых дополнительных условий, поскольку для ->того требуется пересечение интегральных многообразий Sp и S.,, таких же, как и в ранее рассмотренном случае. На поверхности yv происходит слияние состояний равновесия О"" и Этот случай нас устроит, если наличие двоякоасимптотической фазовой кривой возможно в общем случае. Рассмотрим этот вопрос. Через точку О"" проходят интегральные многообразия Sp и S, и через точку 0/>+1, -I — интегральные многообразия Sp i и S i. Пересечение многообразий Sq и Sp,.i является общим. В силу того, что на поверхности /V,, состояния равновесия О -" и сливаются, до момента этого слияния поверхности Sg и Sp+i в окрестности этих точек в общем случае пересекаются по некоторой двоякоасимптотической фазо-  [c.264]


Обобщение ассоциированного закона на случай поверхности нагружения с угловой точкой предложено Койтером ) в 1953 г. В настоящее время эта теория является основой для всех работ, посвященных исследованию пластичности с поверхностями нагружения, имеющими угловые точки. Основные положения теории Койтера согласуются с принципом минимума работы истинных напряжений на пластических деформациях, выраженным неравенством (3.9). Рассмотрим особые точки 2р как точки пересечения некоторого количества регулярных поверхностей с уравнениями вида  [c.437]

Теперь рассмотрим оставшиеся возможности для изменения периодического движения Г, т. е. те, при которых наруилается существование гладкого взаимно однозначного отображения секущей. Для таких изменений есть следующие возможности замкнутая кривая Г стягивается в точку, на ней появляется состояние равновесия, она уходит в бесконечность ). Замкнутая кривая может стянуться только к особой точке — состоянию равновесия — и поэтому этот случай уже был изучен при рассмотрении бифуркаций состояний равновесия. Он соответствует переходу через бифуркационную поверхность Л/, . Второй случай новый, хотя он тоже связан с бифуркацией состояния равновесия, но не был замечен, поскольку раньше рассмотрение относилось только к окрестности состояния равновесия и не выходило за ее пределы. Перейдем к его рассмотрению. Третий случай оставим без внимания ввиду очевидности связанных с ним изменений. В рассматриваемом случае при бифуркационном значении параметра имеется состояние равновесия О и фазовая кривая Г, выходящая и вновь входящая в него. Пусть это состояние равновесия простое, типа О ". Так как фазовая кривая Г выходит из О" , то она лежит на инвариантном многообразии S,,, а так как она в него еще и входит, то она принадлежит еще и многообразию S l,. Отсюда следует, что многообразия Sp и 5 пересекаются по кривой Г. Соответствующая картинка представлена на рис. 7.14. Как нетрудно понять, пересечение поверхностей S,, и не является общим случаем и при общих сколь угодно малых изменениях параметров динамической системы должйо исчезнуть. Это означае т, что в пространстве параметров этому случаю вообще не отвечают области, а, как можно обнаружить, в общем случае только некоторые поверхности на едирплцу меньшей размерности. Таким образом, исследование этой бифуркации периодического движения свелось к следующему вопросу когда фазовая кривая, идущая из простого седлового дви-  [c.262]



Смотреть главы в:

Начертательная геометрия и черчение  -> Некоторые особые случаи пересечения поверхностей

Инженерная графика Издание 7  -> Некоторые особые случаи пересечения поверхностей



ПОИСК



Некоторые особые случаи пересечения одной поверхности друПрименение вспомогательных секущих сфер

Некоторые особые случаи получения линий пересечения поверхностей

Особые

Особые случаи

Пересечение

Пересечение поверхностей

Пересечение поверхности с поверхностью (аП

Поверхность особая



© 2025 Mash-xxl.info Реклама на сайте