Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение твердого сферической по сфере

Предположим, что абсолютно твёрдое тело вращается вокруг неподвижной точки О. Опишем вокруг точки О сферу таким радиусом, чтобы эта сфера пересекла тело тогда сечение тела сферою будет некоторой сферической фигурой, расположенной на поверхности сферы и ограниченной некоторым контуром (-(). Зная, как перемещается сферическая фигура по поверхности сферы, мы будем знать, как перемещается тело вокруг точки О. Таким образом, мы привели изучение движения твёрдого тела вокруг неподвижной точки к изучению движения сферической фигуры по поверхности сферы. Мы видим, что пришли к задаче, вполне аналогичной той задаче, к которой сводилось изучение плоско-параллельного движения абсолютно твёрдого тела, с той только разницей, что вместо рассмотрения движения плоской фигуры вёе плоскости мы в настоящем случае должны рассматривать движение сферической фигуры по поверхности сферы. Поэтому все выводы, приведённые в 81, без существенных изменений повторяются и здесь.  [c.322]


Вообразим, что вышеуказанную неподвижную сферу, на которой имеется сферическая линия (Г), обволакивает подвижная сфера, наглухо скреплённая с подвижной сферической фигурой, ограничиваемой контуром ( () очевидно, что эта подвижная сфера будет наглухо скреплена и с телом, и её скольжение по неподвижной сфере вполне определяет движение абсолютно твёрдого тела. Эта подвижная сфера, обволакивающая неподвижную сферу и по ней скользящая, вполне аналогична подвижной плоскости, скользящей по неподвижной плоскости ( 81). Геометрическое место мгновенных осей вращения в теле, т, е. подвижной аксоид, пересекает эту подвижную сферу по некоторой сферической линии (Г ). Эти сферические линии (Г) и (Г ) вполне аналогичны неподвижной и подвижной полодиям плоской задачи.  [c.325]

На черт. 200 представлен случай, когда неподвижная точка О лежит не внутри, а вне тела М. Мгновенная ось вращения идёт по общей образующей ОС, Конус К есть геометрическое место мгновенных осей в пространстве, а конус К есть геометрическое место мгновенных осей вращения в теле. Чтобы получить вышеуказанные неподвижную сферу и подвижную обволакивающую её сферу, достаточно описать вокруг точки О сферическую поверхность таким радиусом, чтобы она пересекла абсолютно твёрдое тело М в сечении этой сферической поверхности с телом мы и получим сферическую фигуру, ограничиваемую контуром (7). Так как прямые круглые конусы с вершинами в центре шара пересекают поверхности сфер по окружностям, то линии (Г) и (F) в рассматриваемом случае суть окружности. Нетрудно представить движение тела М в этом случае тело М будет вращаться вокруг оси 0D конуса сама же ось 0D будет вращаться вокруг оси ОЕ конуса К, описывая прямой круглый конус с углом при вершине, равным удвоенному углу DOE,  [c.326]

Сферический гироскоп. Твёрдое тело, подпёргое в одной точке, называется сферическим гироскопом, если эллипсоид инерш1и для точки опоры обращается в сферу. Покажем, что движение весомого симметричного гироскопа может быть поставлено в весьма простую связь с движением некогорого весомого сферического гироскопа. В самом деле, интегралам (49.3), (49.4) и (49.7) мы можем дать вид  [c.556]


Смотреть страницы где упоминается термин Движение твердого сферической по сфере : [c.79]   
Теоретическая механика (1970) -- [ c.79 ]



ПОИСК



Движение по сфере

Движение сферическое

Движение твердых тел

Сфера



© 2025 Mash-xxl.info Реклама на сайте