Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колосова—Мусхелишвили преобразование

Решение плоской задачи теории упругости зависит от двух координат и может быть выражено через две произвольные (с точки зрения выполнения уравнений равновесия и условий неразрывности) двухмерные гармонические функции, определяющиеся путем подчинения решения двум краевым условиям на плоском граничном контуре. То обстоятельство, что ортогональные преобразования координат на плоскости и теория двухмерных гармонических функций тесно связаны с теорией функций комплексного переменного, позволило разработать общий метод решения плоской задачи, основанный на аппарате теории аналитических функций (Г. В. Колосов [10], Н. И. Мусхелишвили [20] и его школа). Этот путь в принципе позволяет подойти к решению любой плоской задачи, но наиболее эффективен для односвязных и (в меньшей мере) для двухсвязных областей. Основная идея, которой при этом руководствуются, состоит в отображении рассматриваемой области на одну из канонических областей (на полуплоскость, круг единичного радиуса или круговое кольцо) с последующим использованием аппарата интегралов типа Коши для нахождения двух неизвестных функций по заданному краевому условию. Если ограничиться только односвязными областями (каковые по существу главным образом и рассматриваются [20], [27]), то можно обойтись и без аппарата интегралов типа Коши, оперируя лишь самыми элементарными представлениями теории аналитических фунщий. В нашей книге, носящей общий характер, мы даем только этот наиболее простой и в то же время достаточно эффективный способ, отсылая читателя за более полным и общим изло-  [c.292]



Линейная механика разрушения Издание 2 (2004) -- [ c.0 ]



ПОИСК



Колос

Колосов

Колосова—Мусхелишвили

Мусхелишвили



© 2025 Mash-xxl.info Реклама на сайте