Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гироскопические члены лагранжевой

Наш вывод показывает, что обычная формулировка теоремы о сохранении элергии сумма кинетической и потенциальной энергий в процессе движения остается постоянной справедлива лишь при определенных ограничивающих условиях. Недостаточно, чтобы система была склерономной. Необходимо, помимо этого, чтобы кинетическая энергия была квадратичной формой скоростей, а потенциальная энергия не содержала скоростей вообще. Встречаются, однако, механические системы с гироскопическими членами , линейными относительно скоростей. Более того, в релятивистской механике кинетическая часть фуикции Лагранжа зависит от скоростей более сложным образом, чем в ньюто-  [c.148]


При наличии кинетического взаимодействия между макроскопическими и скрытыми циклическими координатами функция Лагранжа макроскопической системы будет содержать гироскопические члены, линеЙ1Ш1е относительно наблюдаемых скоростей. При отсутствии же подобного взаимодействия скрытые движения проявляются лишь в виде дополнительной фиктивной потенциальной энергии, записанной в макроскопических переменных.  [c.157]

Резюме. Канонические уравнения инвариантны относительно точечного преобразования Лагранжа. Преобразование импульсов происходит с учетом инвариантности дифференциальной формыФункция Гамильтона является инвариантом преобразования, если новая система координат покоится относительно старой. В противном случае функция Гамильтона изменяется за счет гироскопических членов.  [c.233]

Таким образом, если матрица givW кососимметрическая, т. е. д1 1 = —g i, то работа сил тождественно равна нулю, и силы Гv будут гироскопическими. Гироскопические члены в уравнениях Лагранжа могут появляться, например, при наложении на систему связей, зависящих явно от времени. Действительно, так как в этом случае  [c.589]

Диссипативная функция Релея. Если среди заданных сил имеются силы, зависящйе от скорости, то они могут оказать влияние на члены Qr в уравнениях Лагранжа (6.2.1). В некоторых случаях, когда силы являются гироскопическими (например, в задаче о движении заряженной частицы в магнитном поле, см. 10.6), они могут быть учтены путем присоединения к выражению для L соответствующих линейных членов. В этом параграфе мы рассмотрим другой класс задач, связанных с силами, зависящими от скорости. Речь будет идти о силах сопротивления, или диссипативных силах, действующих на каждую частицу в направлении, противоположном ее скорости. Мы ограничимся исследованием простого случая, когда сила сопротивления пропорциональна скорости. Уравхгения движения (2.2.12) запишутся теперь в форме  [c.196]

Вторые члены уравнений Лагранжа образуются тогда, когда кинетическая энергия, кроме выражения (I. 2), имеет в своем составе члены, зависящие от координат. В качестве примера можно указать на гироскопические системы [3], у которых кинетическая энергия дополнительно выражается связями поворотных движений их осей (корпусов) со скоростями вращения роторов (Q = onst) и прецессии q , возникающей в перпендикулярной плоскости к qj  [c.27]


Смотреть страницы где упоминается термин Гироскопические члены лагранжевой : [c.156]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.0 ]



ПОИСК



Гироскопические члены лагранжевой функции

Гироскопический

Член гироскопический



© 2025 Mash-xxl.info Реклама на сайте