Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стоимость волокон борных

Стоимость волокон борных 46  [c.507]

Снижение стоимости углеродных, борных волокон, разработка термостойких органических волокон делают экономически целесообразным внедрение волокнистых ПКМ в машино- автомобиле- и судостроение, медицину и т.д. Из этих ПКМ изготавливают однослойные изделия или их используют в качестве одного из слоев в многослойных конструкциях. Комбинированные конструкции обеспечивают снижение массы до 50% по сравнению с массой металлической конструкции равной прочности, повышение жесткости, демпфирующей способности и увеличение срока службы. Более четверти поли.мерных композиций идет на цели строительства, широкое применение ПКМ находят в производстве товаров народного потребления и др.  [c.143]


Первой деталью, выбранной для этой программы, была хвостовая секция самолета Г-111, расположенная между двумя двигателями. Деталь имела следующие размеры полную длину 3764 мм (от отсека фюзеляжа, расположенного на отметке 610, отсчитываемой от носовой точки самолета, до отсека, расположенного на отметке 770), глубину 1219 мм, ширину 914 мм. Предназначенная для испытаний задняя (расположенная между отметками 673— 770 от носовой точки) секция этой детали имела длину 2464 мм. Передняя часть детали была спроектирована так, чтобы обеспечить разрушение в испытательной секции. Одной из задач программы являлось исследование возможностей применения трех типов перспективных композиционных материалов эпоксидных боро- и углепластиков и алюминия, армированного борными волокнами. Вследствие сокращения поставок борных волокон вскоре после начала выполнения программы основное внимание было уделено углепластикам. Для упрощения технологии и снижения стоимости оборудования форма поперечного сечения первой фюзеляжной детали была выбрана постоянной в отличие от основной алюминиевой конструкции, имеющей переменное сечение. Расчетные нагрузки определяли из типовых критических расчетных условий для каждого узла.  [c.159]

Стоимость углеродных волокон ниже, чем борных волокон или волокон на основе карбида кремния.  [c.257]

В 1966 г. с внедрением борных волокон резко возрос интерес к композитным конструкциям и, с учетом запаса времени, не- обходимого для проведения глубоких исследований, были получены новые данные и разработана новая техника конструирования, сделавшая КУС материалами, пригодными для практиче- ского применения при конструировании летательных аппаратов. Эти новые научные достижения распространились и на стеклопластики, существенно оптимизировав их разработку. Если ранее стеклопластиковые компоненты разрабатывались в основном с 4— 5-кратным запасом прочности, то теперь с использованием новой компьютерной технологии запас прочности был существенно снижен до практически реальных величин, приводящих к оптимальной экономии массы и снижению стоимости.  [c.542]

Недостатком борных волокон, полученных по этой технологии, является высокая стоимость вольфрамовой нити. Разработан процесс замены вольфрамовой токопроводящей нити на подложку более дешевого углеродного волокна диаметром 30 мкм.  [c.871]

Тепло- и водостойкость боропластиков определяется главным образом свойствами применяемого связующего. Основным недостатком боропластика как конструкционного материала является его высокая стоимость, что объясняется сложностью изготовления борных волокон и необходимостью применения вольфрама в качестве подложки. Так, в США в 1972 г. 1 кг борного волокна стоил 550—600 долл. Однако расширение производства и улучшение технологии постоянно снижают цену, и в 1978 г. она упала до 155—265 долл. за 1 кг [111].  [c.11]


Боропластики являются весьма дорогими материалами из-за высокой стоимости борных волокон. Поэтому они применяются как конструкционные материалы с весьма высокими удельными механическими характеристиками для изготовления высоконагруженных деталей в наиболее ответственных изделиях — летательных аппаратах, космической технике, так как позволяют существенно снизить массу изделия.  [c.780]

Борные волокна позволили получить первый истинно композиционный материал для авиационно-космической техники. Преимущества борных волокон состоят не только в том, что они обладают высокими показателями удельных механических свойств, но и в том, что их использование возможно в сочетании как со связующими, ранее разработанными для стеклопластиков, так и с алюминием. Поскольку авиационные конструкции обычно проектируются с учетом требований как по жесткости, так и по прочности, композиционные материалы на основе борных волокон эффективнее использовать в тех агрегатах, в которых малые деформации должны сочетаться с высокой прочностью. Борное волокно пока еще относительно дорогой материал, хотя его стоимость не столь велика, как указывается в некоторых источниках. Пауэрс [16], например, считает, что цена борного волокна до некоторой степени зависит от уровня цен и технологии получения других волокон. Относительно высокий спрос и усовершенствование процессов изготовления могли бы обеспечить снижение цены на борное волокно до 110 доллар/кг.  [c.46]

Нижняя обшивка. Выбран гибридный эпоксидный боро-углепластик для реализации более низкой плотности и стоимости углеродных волокон типа А. Борные волокна использованы в слоях, ориентированных в направлении 0°, углеродные — в слоях с ориентацией 45 и 90°. Панель пинпшй обшивки состоит из 63 слоев, из которых 11% ориентированы в направлении 90°. Расчетная осевая нагрузка в соединениях составляет 5172 кгс/сдг. Для снижения концентрации напряжений у отверстий под крепежные элементы вдоль балки использовались четырехсторонние пятиступенчатые соединения, выполняемые внахлестку. В непосредственной близости от отверстий слои углеродных волокон, ориентированные в направлении 0°, заменяют борные слои такой же ориентации.  [c.151]

Высококачественные препреги. Они составлены из углеродных, графитовых или борных волокон, упрочняющих эпоксидные смолы, и использованы только в нескольких специальных случаях, например с спинакерной мачте для 12-метровой яхты [18]. Как было отмечено ранее, высокая стоимость таких слоев препятствовала их более широкому применению в судостроении.  [c.238]

Борные волокна обладают высокой твердостью. Они имеют твердость по шкале Мооса 9,3 и уступают по твердости лишь алмазу. В изделиях из армированных волокнами пластмасс нет настоятельной необходимости применения борных волокон, стоимость которых больше чем на порядок превышает стоимость других волокон. Однако вследствие того, что пластмассы, армированные волокнами, обладают низкой стойкостью к образованию поверхностных трещин, борош1астики с высокими значениями модуля упругости и твердости используют в качестве поверхностного слоя в гибридных материалах или конструкциях.  [c.270]

Наибольшее количество пластиков, армированных короткими волокнами и выпускаемых промышленностью, содержат стеклянные волокна. Основными достоинствами этих волокон являются низкая стоимость, простота получения и переработки, а также высокая прочность при условии осторожного обращения с ними после вытяжки, хотя, конечно, процессы рубки волокон и формирования изделий из наполненных композиций сопровождаются частичным разрушением волокон. Асбестовое волокно является ближайшим конкурентом стеклянного волокна, поскольку оно также дешево и помимо высокой прочности обладает более высоким, чем стеклянные волокна, модулем упругости. Асбестовые волокна значительно тоньше и короче, чем стеклянные, и поэтому с ними труднее работать, хотя разработаны специальные методы их переработки и промышленностью выпускаются полимеры, армированные асбестовыми волокнами — асбопластики. Рубленые углеродные и борные волокна хотя и обеспечивают потенциально более высокую прочность и жесткость материала на их основе, достигается это за счет более высокой стоимости, и поэтому они пока не могут составить серьезную конкуренцию стеклянным и асбестовым волокнам. Нитевидные монокристаллы (усы), например из АЬОз, SisNU, Si , обладают наибольшей прочностью, однако они слишком дороги и с ними слишком трудно работать, чтобы их можно было использовать в промышленных масштабах.  [c.90]


Более эффективным конкурентом стеклопластиков является большая группа асбопластиков — термо- и реактопластов, производимых в промышленных масштабах. Асбестовые волокна обладают прочностью, аналогичной прочности стеклянных волокон, однако они более жесткие. Они также устойчивы к химическим и термическим воздействиям и в отличие от стеклянных волокон устойчивы к действию влаги. Поскольку асбестовые волокна значительно дешевле углеродных и борных волокон, а также монокристаллов, они служат естественной заменой стеклянных волокон, если требуется более высокая прочность и жесткость в сочетании с химической, термической и абразивной стойкостью при низкой стоимости. Для наиболее полной реализации механических свойств асбестовых волокон необходимо в процессе получения и формования наполненных композиций обеспечивать тщательную ориентацию волокон. Решению этой проблемы посвящено большое число работ [56]. В настоящее время асбестовые волокна наиболее широко используются в литьевых термопластах типа полипропилена, а также в слоистых реактопластах горячего прессования, например в фенопластах, с более или менее хаотическим распределением волокон. На рис. 2.41 сопоставлена прочность при  [c.98]

Из таблицы видно, что по сравнению с борными волокнами все остальные волокна имеют те или иные недостатки. Стеклянное волокно характеризуется низкой стоимостью и высокой прочностью, однако его низкий модуль упругости и взаимодействие с алюминием являются серьезными недостатками, как указано в работе Бэйкера и Кречли [8]. Наличие этих волокон в виде жгутов усугубляет эти недостатки, поскольку композиционный материал с унрочнителем в виде жгутов проще всего можно получить пропиткой пучка расплавом, а расплавленный алюминиевый сплав более реакционноспособеи по сравнению с тем же сплавом в твердом состоянии. Волокна из окиси алюминия, детально описанные Механом и Муром в гл. 4, имеют более низкие значения удельных модуля упругости и прочности и более дороги.  [c.424]

Процесс электролитического формования может осуществляться в результате намотки волокна на оправку и электролитического осаждения алюминия из растворов, содержащих алюмогидрид лития или хлорид алюминия [96]. Установлено, что алюминий не осаждается на поверхности борных волокон, а предпочтительно собирается в промежутках между волокнами. Устранить этот недостаток можно предварительным нанесением на волокна никелевого покрытия. Таким методом сложно изготовить многослойный материал с точным распределением волокон, но монослойные ленты получаются довольно хорошо. Из-за сравнительно высокой стоимости эта технология не нашла широкого применения.  [c.444]

Упрочнение алюминия и его сплавов более дорогими волокнами В, С, AI2O3 повышает стоимость КМ, но при этом улучшаются некоторые его свойства. Например, при армировании борными волокнами модуль упругости увеличивается в 3 - 4 раза, углеродные волокна способствуют снижению плотности. На рис. 14.36 и ниже показано влияние объемного содержания волокон бора Vb на прочность и жесткость композиции алюминий — бор  [c.465]

Каждый из рассмотренных ВКПМ обладает своими положительными и отрицательными свойствами, но для целого ряда конструкций желательно иметь материал, обладающий комплексом свойств, присущих каждому из этих материалов. Поэтому в последние годы применяют комбинированные ВКПМ, главным образом полиармированные, т. е. такие композиции, которые содержат два или более различных армирующих элементов. В этих материалах используют преимущества каждого вида волокон [71]. Например, сочетание борных, углеродных и стеклянных волокон с полимерным связующим расширяет диапазон их свойств, т. е. одновременно с высокими значениями прочности и упругости эти материалы имеют высокую ударную вязкость, более низкую стоимость. Иногда прочность высокомодульных углеродных волокон недостаточна, тогда материал модифицируется путем их частичной замены более прочными стеклянными волокнами. Иногда волокна бора закрепляют друг относительно друга стеклянными или углеродными волокнами. Весьма распространенной является композиция бор—алюминий. Так, трансверсальная прочность такого материала повышается в два-три раза. В композициях, состоящих из борных волокон, алюминия и полимера, возрастает модуль сдвига кроме того, упрощаются методы соединения и сборки узлов конструкций.  [c.12]

В качестве наполнителей, снижающих стоимость композиций, улучшающих их технические свойства (вязкость, тиксотропность, и др.) и повышающих эксплуатационные характеристики (прочность, адгезию, непроницаемость, химическую стойкость и т. п.), используют различные порошки (кварцевая мука, графит, тальк и пр.), волокна (асбестовые, стеклянные, углеграфитовые, борные, полипропиленовые и др.), ткани (стеклянные, синтетические, из угольных волокон) и листы (асбестовые).  [c.225]


Смотреть страницы где упоминается термин Стоимость волокон борных : [c.549]    [c.131]    [c.453]   
Применение композиционных материалов в технике Том 3 (1978) -- [ c.46 ]



ПОИСК



Борн (Bom

Борная

Борнит 789, XII

Волокна

Волокна борные

Стоимость



© 2025 Mash-xxl.info Реклама на сайте