Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волны в плазме дискретной среде

Очевидно, что можно было бы не выписывать (4.39), а найти непосредственно из эквивалентной схемы Z = го Ь/(1 — ш ЬСх) и = шС, что с учетом (4.38) сразу даст (4.40). Однако мы хотели лишний раз продемонстрировать, как появляется дисперсия из-за нелокальной связи переменных (см. материальное уравнение Ф = Ф(/) в (4.39)). Интересно, что дисперсия в данной среде-модели такая же, как и в случае длинной линии с индуктивной связью между ячейками (см. рис. 4.13). Дисперсионная кривая, представленная на рис. 4.18, определялась в обычном для таких целей эксперименте [7], когда один конец линии нагружен на сопротивление, не равное характеристическому сопротивлению Zo линии Zo = л/Ь/С/ 1 - /и>о) (Ь/Су/ 1 Ом). Из-за отражений в линии устанавливается картина стоячих волн. Длину волны находят с помощью зонда и лампового вольтметра, измеряя расстояние между минимумами стоячих волн. Самой высокой частоте соответствует длина волны приблизительно 2Дж. Как показано в работе [7], данная среда-модель количественно описывает распространение ионных акустических волн (ионный звук) в плазме. Эта линия моделирует также распространение звука в твердом теле (звуковая волна распространяется без дисперсии, пока ее волновое число к много меньше обратного вектора решетки д = 2тт/а а — расстояние между ионами решетки), в противном случае становится уже существенной пространственная дисперсия, связанная с дискретностью среды ), спиновые волны в ферромагнетике и т. д.  [c.79]



Задачи по оптике (1976) -- [ c.238 ]



ПОИСК



Волны в плазме

Дискретность

Плазма

Среда дискретная



© 2025 Mash-xxl.info Реклама на сайте