Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фоккера — Планка уравнение для случайных блужданий

Фазовый портрет этих уравнений при = О изображен на рис. 3.1. К окружности Г, состоящей из состояний равновесий, асимптотически приближаются все остальные фазовые точки, за исключением точки неустойчивого равновесия О. Наличие малых случайных воздействий ( Ф 0) приводит к случайным блужданиям фазовой точки в окрестности Г, т. е. амплитуда колебаний А близка к двум, а фаза медлеппо меняется и может накапливать свои изменения. В установившемся состоянии плотность вероятностей р А, ф) не зависит от угла ф и изображается поверхностью вида, показанного на рис. 3.2. Таким образом, входное случайное воздействие преобразуется в осцилляторе Ван-дер-Поля в выходные флуктуации амплитуды колебаний и случайный дрейф фазы ф. Для отыскания соответствующей плотности вероятностей может быть составлено широко известное уравнение в частных производных Эйнштейна — Фоккера — Планка. С помощью этого уравнепия может быть найдено не только установившееся распределение вероятностей, т. е. уравнение изображенной на рис. 3.2 поверхности, но и процесс ее установления, а также плотности вероятностей перехода из одного состояния Л, ф в другое А, ф за р я т [216, 310, 320, 342]. Эта плотность вероятностей р А, ф А, ф т) при тимеет пределом установившуюся плотность вероятностей р А).  [c.59]


З-и этап, < > 1/Г — вторая грубая шкала времени. В этой шкале случайное блуждание брауновской частицы приобретает характер диффузионного процесса, движение частицы как бы безынерционно, частица не имеет памяти (в механическом смысле) о своей скорости (распределение по скорости — всегда максвелловское). Каждое промежуточное состояние частицы в момент <о фиксируется только координатой ж(<о), которую можно посчитать за новое начальное положение Жо, из которого начнется тот же, что и раньше, процесс диффузии (временной аргумент сдвинется на <0, I = 1- о) без всякого воспоминания о его предыстории. Такие процессы называются марковскими. Эволюция системы описывается с помошью функции распределения р Ь, г), являюшейся решением уравнения Фоккера—Планка и определяющей окончательный этап релаксации на макроскопическом времени Гполн-Граничные и начальные условия для функции р 1, г) существенно определяют детали этого процесса.  [c.99]


Смотреть страницы где упоминается термин Фоккера — Планка уравнение для случайных блужданий : [c.235]    [c.541]    [c.595]   
Задачи по термодинамике и статистической физике (1974) -- [ c.8 , c.26 ]



ПОИСК



Планка

Случайность

Случайные блуждания

Уравнение Фоккера—Планка



© 2025 Mash-xxl.info Реклама на сайте