Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изохроматы главные

Рис. 134. Образование изохромат (выравнивание главного напряжения сдвига) и определение разности главных напряжений — (Тг согласно [38] Рис. 134. Образование изохромат (выравнивание <a href="/info/4949">главного напряжения</a> сдвига) и определение разности <a href="/info/4949">главных напряжений</a> — (Тг согласно [38]

Итак, изохроматы — это линии одинаковой разности главных напряжений из-за (о 1— о 2)/2 = Тп,ах иногда не совсем точно называются равновесием главного сдвига. По виду изохромат можно составить представление о ходе нагружения. Это позволяет распознавать концентрации напряжений. На кромке плоской модели благодаря о з = О может быть определено краевое напряжение  [c.257]

В плоскости изображения все такие лучи, испытавшие двойное преломление, соберутся по кругу с одной и той же разностью хода. В данном случае интерференционная фигура состоит следовательно из чередующихся темных и светлых колец (вкл. л., —исландский шпат, вырезанный перпендикулярно к оптич. оси, в монохроматич. свете На, между скрещенными НИКОЛЯМИ). Картина осложняется однако поляризационными явлениями. Каждый луч разбивается вследствие двойного прелом-ления на два один с колебаниями в плоскости главного сечения (то есть в радиальном направлении—фиг. 8), другой с колебаниями, перпендикулярными к этой плоскости (т. е. в тангенциальном направлении—фиг. 8). Амплитуды этого разложения будут зависеть от азимута со. В направлении ОР есть только радиальная компонента, к-рая не будет пропускаться анализатором (пропускающим в разбираемом случае только колебания, перпендикулярные к ОР). В направлении ОА могла бы пройти также только радиальная компонента, но ее нет под этим азимутом в падающем свете. Т. о. по двум направлениям ОР и ОА свет будет полностью погашен, по середине между этими направлениями свет будет максимальным, на круговую интерференционную картину наложится темный крест если направления колебаний падающего и пропускаемого анализатором света параллельны, то крест будет светлым. Интерференционные кольца являются кривыми равной разности хода, зависящей от А, поэтому при освещении белым светом кольца становятся радужными. Кривые равной разности хода назьшаются изохроматами. Распределение интенсивности в темном или светлом кресте зависит только от азимута со и не зависит от А (если только от А не зависит положение оптич. осей), поэтому при освещении белым светом крест не имеет окраски, он черный или белый (интерференционные фигуры такого типа называются и з о г и р а-м и—линиями равного поворота). Для точек интерференционной картины, близких к центру, углы Тг и (фиг. 7) мало отличаются друг от друга, и оптич. разность хода обыкновенного и необыкновенного лу-  [c.157]

Форма изохромат и интерференционных полос определяется симметрией кристалла и ориентацией его оптических осей. На рис. 283 показаны интерференционные полосы в случае пластинки одноосного кристалла, вырезанной перпендикулярно к оптической оси. В соответствии с осевой симметрией они имеют форму концентрических кругов. Картина получена в скрещенных николях. Кольца пересечены темным крестом. Происхождение его весьма простое. На пластинку К. падает линейно поляризованный свет. Рассмотрим плоскость главного сечения и плоскость, перпендикулярную к ней.  [c.488]


Соответствующее таким кривым состояние поляризации света совпадает с со стоянием иоляризации света, падающего на кристалл. Это связано с тем, что для главных изогир направление колебаний, пропускаемых анализатором, совпадает с одним из направлений колебаний в кристалле, а для главных изохромат разность фаз между двумя выходящими пучками кратна 2я. Обе системы кривых налагаются друг на друга, но их можно изучать но отдельности.  [c.642]

Возвращаясь к случаю протяженного источника, мы должны рассмотреть прохождение волн с различными направлениями распростраиеиия. Предположим, что эти направления образуют небольшие углы с нормалью к пластинке. Зададим каждую из падающих волн ее волновой нормалью в фиксированной точке А (см. рис. 14.21). Между точками F в фокальной плоскости линзы, где собираются волны, и точками В, где нормали проходящих волн АВ пересекают иижнюю поверхность пластинки, существует однозначное соответствие ЛВ — это среднее из АВ и АВ"). Так как наклон АВ к нормали пластинки AD мал, точки Р образуют слегка искаженное изображение — проекцию точек В. Следовательно, форма изохромат существенно зависит от местоположения точек В, для которых постоянна величина б. В частности, для главных изохромат ата-постоянная равна целому кратному 2я. Для исследования влияния изменения толщины пластинки мы должны лишь сместить плоскость, содержатцую точки В, параллельно самой себе.  [c.643]

На рис. 14.24 показана типичная интерференционная картина, полученная с одноосным кристаллом на ней ясно видны главные нзогвры и изохроматы.  [c.645]

В более общем случае, когда кристалл ориентирован относительно направлений поляризаторов произвольным образом, главные изогиры проходят через точки, соответствующие оптическим осям, и имеют форму равнобочных гипербол, асимптоты которых совпадают с направлениями колебаний, пропускаемыми призмами Николя. Если при фиксированных положениях обеих призм поворачивать кристаллическую пластинку в ее плоскости, то картина изогир будет изменяться, а изохроматы (ие считая их вратцеиия) останутся такими же, так как они определяются условиями, не зависящими от направлений поляризаторов. Типичная интерференционная картина, полученная с пластинкой двухосного кристалла, показана на рис. 14.26.  [c.647]

Определение положения оптических осей и главных показателей преломления кристаллической среды. Так как изохроматы образуют замкнутые кривые, охватывающие оптическую ось (или оси), 10 1 аблюдение интерференционных картин сразу же позволяет установить число осей кристалла и определить их положение. Интерференционные картины можпо наблюдать в микроскоп, снабженный двумя призмами Николя (так называемый поляризационный микроскоп), либо удаляя окуляр и фокусируя глаз на заднюю фокальную плоскость объектива (что воспроизводит условия рис. 14.21), либо помещая дополнительную линзу так, чтобы заднюю фокальную плоскость объектива можно было наблюдать через окуляр. При втором методе получается уве.чи-ченное изображение интерференционной картины и можно проводить измерения, используя калиброванную 1икалу окуляра. Таким образом, можно измерять угол между оптическими осями двухосного кристалла (естествеппо, необходимо учитывать, что при выходе из кристалла свет преломляется). Указанные способы пригодны для определения положения оптических осей и измерения их наклона даже при наличии очень небольших кусочков кристалла, попадающихся в тонких слоях минералов.  [c.647]


Смотреть страницы где упоминается термин Изохроматы главные : [c.245]    [c.714]   
Основы оптики Изд.2 (1973) -- [ c.642 ]



ПОИСК



Изохроматы



© 2025 Mash-xxl.info Реклама на сайте