Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракция при некогерентном освещении ЗВЗ

В случае образования изображения при некогерентном освещении, для которого картина дифракции или функции разброса имеет вид  [c.211]

В первой модели делается акцент на общий характер дифракции (рассеяние) света от объекта, когда условия по крайней мере частично когерентны, и на способ сведения света для формирования изображения. Аспекты анализа Фурье, относящиеся к первой части этого вопроса, уже знакомы нам по гл. 3 и 4. В разд. 5.3 мы рассматриваем их снова на этот раз с учетом второго этапа формирования изображения. Эта модель первоначально была сформулирована (в основном качественно) в 1873 г. Э. Аббе [1], который занимался проблемами наблюдений периодических объектов под микроскопом. Как можно сказать, пользуясь современной терминологией, он выяснил, что при способах освещения, используемых обычно в оптической микроскопии, формирование изображения вовсе не является полностью некогерентным процессом, как иногда полагают в действительности в некоторых современных системах он может быть почти когерентным.  [c.85]


Книга содержит введение в качественную теорию дифракции и анализ образования изображений при некогерентном и когерентном освещении. В ней рассматриваются свойства когерентного света и излагаются теоретические и экспериментальные основы оптической голографии (восстановления волнового фронта).  [c.4]

В этом случае проблема более проста, чем в случае некогерентного освещения. В самом деле, рассмотрим распределение комплексных ам плитуд Q у, z) на плоскости объекта математическое выражение принципа Гюйгенса — Френеля [соотношение (3.10)] показывает, что распределение амплитуд на сфере с центром в О есть преобразование Фурье функции Q(y, z). Эта сфера сравнения S может, в частности, опираться на контур 1входного зрачка прибора, и для того, чтобы перейти к распределению амплитуд на сфере S с центром в О, достаточно вычислить изменение оптического пути L 1между этими двумя сферами [соотношение (3.11)], т. е. аберрацию прибора. Наконец, изображение представляется преобразованием Фурье распределения амплитуд на S, и мы увидим, что образование изображения по существу есть следствие двух дифракций одна соответствует переходу от объекта до входного зрачка, другая — от выходного зрачка до изображения. Поскольку каждой из этих дифракций соответствует свое преобразование Фурье, закон фильтрования представляется весьма простым. Если коэффициент пропускания прибора мало меняется, можно утверждать, что все частоты, распространяющиеся в направлении, проходящем через входной зрачок, пропускаются [иногда с изменением фазы, возникающим в результате действия величины h ( Д) в соотношении (3.11)] частоты же более высокие, направляющие дифрагированные волны мимо зрачка, исключаются это и есть основная идея теории Аббе о разрешающей силе микроскопа.  [c.69]

Дефекты оптических изображений (влияние аберраций) можно исследовать либо в рамках геометрической оптики (когда аберрации велики), либо в рамках теории дифракции (когда аберрации достаточно малы). Раньше обычно возникали трудности при попытках сравнить результаты этих двух подходов, поскольку исходные положения последних совершенно различны. Мы попытались развить 6a iee единообразный метод, основанный на понятии о деформации волновых фронтов. При изложении геометрической теории аберраций (гл. 5) мы нашли возможным и целесообразным использовать старый метод Шварцшильда после небо.льшого изменения введенного им эйконала. В главе, посвященной дифракционной теории аберраций (гл, 9), дается обзор теории Нижбера — Г1,ернике в пей излагается также вводный раздел об изображении при когерентном и некогерентном освещении протяженных объектов, где используются в основном преобразования Фурье.  [c.12]


Образование изображения некогерентно излучающего одномерного объекта для оптической системы, обладающей свойствами линейности и изопланатизма, без учета геометрического и фотометрического масштабов иллюстрирует рис. 199, где (х) характеризует распределение яркости на предмете. Каждому линейному элементу —Вд объекта соответствует некоторая функция рассеяния А ( ) объектива, которая является, по сути, математической моделью оптической системы, она отображает действие аберраций, дифракции и рассеяния света. Иногда ее называют аппаратной функцией. Параметр I отсчитывается от точки изображения, в которой определяется освещенность.  [c.247]


Основы оптики Изд.2 (1973) -- [ c.0 ]



ПОИСК



Дифракция

Дифракция некогерентная

Некогерентность



© 2025 Mash-xxl.info Реклама на сайте