Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая нагрузка бытовая технологическая

При выборе оборудования ТЭЦ основным определяющим фактором является характеристика заданной тепловой нагрузки. Тин турбины прежде всего определяется характером тепловой нагрузки. При технологической нагрузке устанавливаются турбины типа ПТ и П-турбины. Последние обозначаются буквой Р например, Р-50-130-13—это турбина с регулируемым противодавлением 13 кгс/см (1,275 МПа), на начальное давление 130 кгс/см (12,7 МПа), с номинальной электрической мощностью 50 МВт. Отбор П используется для покрытия технологической нагрузки, отбор Т — для подогрева химически очищенной воды и для покрытия тепловой нагрузки с горячей водой на промышленные и бытовые нужды. Базовая часть технологической нагрузки может покрываться паром от турбин с противодавлением. Поэтому для ТЭЦ промышленного типа применяется сочетание турбин ПТ и турбин Р.  [c.162]


Виды теплового потребления. По назначению тепловой энергии могут быть выделены два основных вида тепловой нагрузки технологическая и отопительно-вентиляционная, к которой относят также бытовую.  [c.13]

Тепловая мощность отборов турбины ТЭЦ рассчитывается на покрытие примерно постоянной составляющей нагрузки тепловых потребителей (пар для технологических нужд промышленных предприятий). Для сезонной или пиковой части тепловой нагрузки — отопление, вентиляция, бытовое горячее водоснабжение, зависящей от температуры атмосферного воздуха, использовался пар энергетических парогенераторов, которые по существу являлись резервными. С этой целью пар от резервных парогенераторов через РОУ подавался на пиковые подогреватели сетевой воды. Степень использования этих парогенераторов была крайне низкой. Кроме того, сооружение их, а также сооружение пиковых подогревателей, РОУ, трубопроводов и другого вспомогательного оборудования требовали больших капитальных затрат. Вместе с тем непосредственный подогрев воды для горячего водоснабжения при сжигании топлива без парообразования в парогенераторах и последующего дросселирования в РОУ и охлаждения в водоподогревателях проще и экономичнее. Подогрев сетевой воды осуществляют в водогрейных пиковых котлах, стоимость которых значительно ниже стоимости резервного парогенератора. Установка пиковых котлов на действующих ТЭЦ позволяет высвободить соответствующее количество пара от резервных парогенераторов высокого давления п использовать его в турбинах, т. е. увеличить электрическую мощность ТЭЦ без больших капитальных затрат. Вместе с тем пиковые водогрейные котлы, имеющие малую длительность кампании, будут рентабельны  [c.226]

Верхний предел мощности районных отопительных котельных при сплошной многоэтажной застройке определяется величиной общей тепловой нагрузки, при которой эффективна раздельная схема энергоснабжения. Удельные приведенные затраты в централизованную систему теплоснабжения от районных отопительных котельных приблизительно равнозначны в диапазоне тепловых нагрузок от 100 до 600 Гкал/ч и имеют слабо выраженный минимум при нагрузках 300—350 Гкал/ч. Дальность передачи тепла в горячей воде от этих котельных— до 7 км, Верхний предел оптимальной мощности районных промышленно-отопительных котельных составляет 350— 450 Гкал/ч. Эффективность централизации теплоснабжения от котельных на базе паровых технологических нагрузок выше, чем на базе коммунально-бытовых в горячей воде.  [c.34]


Тепловая нагрузка электрической станции разделяется на технологическую, сезонную (отопление, вентиляция, кондиционирование воздуха) и горячее водоснабжение для бытовых нужд. Технологическая нагрузка определяется условиями производства и в качестве теплоносителя используется пар с давлением 4—12 ата или (реже) горячая вода. Суточный график технологической нагрузки зависит от числа рабочих смен на предприятиях и характера технологических процессов. Сезонную тепловую нагрузку обычно удовлетворяют горячей водой, которая как теплоноситель экономически наиболее выгодна. Для приготовления горячей воды используют пар низкого давления (из отборов турбин).  [c.572]

Водогрейные котлы применяют для снабжения подогретой водой систем отопления и вентиляции, бытовых и технологических потребителей. Котлы устанавливают в промышленно-отопительных, котельных, а также на ТЭЦ для покрытия пиковых отопительно-вентиляционных нагрузок. Основная их особенность — работа при постоянном расходе сетевой воды и включении непосредственно в тепловую сеть. Нагрузка котлов регулируется изменением температуры входящей и выходящей воды путем изменения форсировки топки. Температура воды на входе в котел 70 °С (в пиковом режиме до 110 С), температура воды на выходе из котла — 150 °С и более (до 200 °С). Основные параметры и технические требования на котлы содержатся в ГОСТ 21563-93 [8] (табл. 1.62—1.63). Котлы предназначены для сжигания газа, мазута и твердого топлива. Для них установлена следующая шкала тепловых мощностей, МВт (Гкал/ч) 4,65 (4) 7,5 (6,5)  [c.105]

Электрические нагрузки и расходы электроэнергии выражаются, соответственно, в квт и квтч. Тепловые нагрузки для каждого из разных качественных параметров теплового потребления того или другого целевого назначения помещаются в табл. 13-1 в отдельности, с указанием соответствующих качественных параметров энергоносителя, и измеряются в единицах тепла (ккал, мгккал) для нагревательных и отопительно-вентиляционных и бытовых целей. Тепловые нагрузки, обусловленные технологическими силовыми процессами, определяются обычно в весовых количествах (кг, т) производственного пара соответствующих качественных параметров. Возможно также, имея в виду определение в дальнейшем энергетических коэффициентов потребления и комбинированного производства энергии, измерять и расходы энергоносителя на технологические силовые процессы в единицах тепла.  [c.282]

Вырабатываемое различными источниками тепло используется для покрытия технологической и коммунально-бытовой нагрузок. Одной из наиболее теплоемких отраслей химической промышленности является азотная. Предприятия азотной промышленности для технологических целей используют пар давлением 0,5 1,5 и 2,5 МПа. При этом пар давлением 1,5 и 2,5 МПа применяется для конверсии метана, а пар 0,3—0,5 МПа и горячая вода с температурой 150/70 и ld0l7Q° используются на нужды отопления и вентиляции. Расход тепла на технологические нужды составляет в среднем около 80% общего максимально-часового расхода. Число часов использования максимума технологической тепловой нагрузки составляет 7500—8500 [24].  [c.30]

По-видимому, для контактных экономайзеров, устанавливаемых за промышленными печами, сушилками и котлами, рабо-таюш,ими на твердом и жидком топливе, предпочтительнее применять прямоточное движение теплоносителей. Во-первых, прямоток в большей мере, чем противоток, предохраняет насадку от загрязнения и забивания. Во-вторых, промышленные печи и сушильные установки часто работают на предприятиях, не являющихся крупными потребителями горячей воды для технологических и бытовых нужд. Поэтому перед устанавливаемыми за ними контактными экономайзерами обычно не ставится задача максимального использования тепла уходящих газов для нагрева воды. Постановка такой задачи целесообразна лишь при большой нагрузке системы технологического горячего водоснабжения и при использовании нагретой в экономайзерах воды для низкотемпературного водяного отопления, воздушного отопления и хладо-снабжения либо использования ее по схеме теплового насоса. Если же нет условий для использования всей горячей воды, которую можно получить в противоточных контактных экономайзерах печей и сушилок, следует применять прямоточные экономайзеры. Ориентация на прямоток позволяет уменьшить засоряемость насадки и обеспечить незначительное аэродинамическое сопротивление даже при высоких скоростях газов. При прямоточной схеме необходимо принимать такие расчетные скорости газов, чтобы обеспечить плотность орошения насадки водой не ниже 15—20 mV(m -4).  [c.205]


Большое значение для определения Л тэц имеет выбор значений и Qпp , которые зависят от теплового баланса района и промышленных предприятий, а также от целесообразного радиуса охвата прилегающих к проектируемой ТЭЦ потребителей теплоты. Радиус охвата тепловых потребителей зависит от параметров и вида теплоносителя, а также от удельной тепловой плотности и характера тепловой нагрузки, от типа прокладки теплопроводов, от стоимости топлива и оборудования в данном экономическом районе. Для коммунально-бытовых потребителей при застройке пятиэтажными и более высокими домами технико-экономический радиус охвата тепловых потребителей составляет 15 — 20 км. Для технологических потребителей, требующих пара с параметрами 0,7—1,5 МПа и имеющих число часов использования максимума тепловой нагрузки более 3000—4000 ч в году, технико-экономический радиус охвата составляет 5—7 км. Значения отзц и а р также приходится предварительно оценивать, если не было проведено технико-экономического расчета по их определению в предварительной стадии выбора варианта теплоэнергоснаб-жения данного промышленного района. Для прикидочной оценки мощности при стоимости топлива в районе 18— 23 руб/т можно рекомендовать при QoГ" > 350 МВт и >120 МВт атэц = 0,5 и а р = 0,7 с последующим уточнением этих значений.  [c.217]

На рис. 8.2 показаны типичные графики тепловой нагрузки. Тепло отпускается потребителям с водяным паром давлением от 0,15 до 1,6 МПа (иногда и выше) на, технологические нужды и с горячей водой, имеющей температуру 60—150°С, для отопительных, вентиляционных и бытовых целей. Расход тепла обычно переводится в расход пара, вырабатываемого источником. График технологических тепловых нагрузок по характеру близок графику электрических промышленных нагрузок. Ото-пительно-вентиляцио1нные нагрузки существенно зависят от времени года. В летний период тепло на отопление не расходуется.  [c.349]

Рис. 16-1. Шкрытие годового графика отопительно-вентиля-ционной, технологической и бытовой тепловой нагрузки ТЭЦ по продолжительности. Рис. 16-1. Шкрытие годового графика отопительно-вентиля-ционной, технологической и <a href="/info/344902">бытовой тепловой нагрузки</a> ТЭЦ по продолжительности.

Смотреть страницы где упоминается термин Тепловая нагрузка бытовая технологическая : [c.126]   
Тепловые электрические станции (1967) -- [ c.18 ]



ПОИСК



Бытовая тепловая нагрузка

Нагрузка тепловая



© 2025 Mash-xxl.info Реклама на сайте