Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние системы безразличное относительное

Из теоремы сложения скоростей следует, что относительная и переносная скорости равноправны. Их можно менять местами, и безразлично какое движение считать относительным и какое переносным. Разыскивая составляющие сложного движения тела, нужно иметь в виду, что выводы, которые при этом будут сделаны, относятся к мгновенным состояниям системы, и не распространяются на конечные перемещения.  [c.34]

Возбужденное возмущением состояние системы в определенных случаях может быть новым, сколь угодно близким к первоначальному положением равновесия (покоя) системы (рис. 18.2,г). Относительно такого проверяемого положения равновесия говорят, что оно безразличное или нейтральное. В других случаях вызванное возмущением состояние системы представляет собой движение. Если этим движением является монотонное возвращение к исходному положению системы (рис. 18.2, (3) или затухающие колебания (рис. 18.2, н), то проверяемое положение равновесия является асимптотически устойчивым. Если вызванное возмущением движение является незатухающими периодическими (в частности, гармоническими) колебаниями, то проверяемое положение равновесия устойчиво (рис. 18.2, а), и, наконец, в случае, если движением, вызванным возмущением, является монотонный уход от проверяемого положения равновесия (рис. 18.2, е) или возрастающие по размаху с течением времени колебания, равновесие неустойчиво.  [c.284]


Если на свободное тело действует система сходящихся сил (безразлично, пространственная или плоская), эквивалентная нулю, то из этого еще не следует, что данное тело будет находиться в покое относительно выбранной системы отсчета, так как при выполнении условий (1) или (2) это тело может двигаться по инерции. Необходимыми и достаточными условиями состояния покоя свободного тела, на ко-  [c.53]

Состояние эле.мента системы, при котором малые возмущения вызывают относительно малые увеличения наибольшего перемещения точки его оси или срединной поверхности, называется устойчивым равновесием в противном случае равновесие элемента неустойчиво. Значит, равновесие сжатого стержня при Р < Р — устойчиво, а при Р > Р — неустойчиво. Потеря устойчивости — переход элемента системы из устойчивого равновесия в неустойчивое (для идеального стержня в безразличное).  [c.354]

X = х источник 5 (б силу утверждения (2) состояние его движения для нас безразлично ) испускает световой сигнал. К моменту т этот сигнал достигнет в системе К точек А к В с координатами X — СХ и дс + ст. Однако в силу утверждения (1) этот сигнал должен достигнуть в тот же момент в системе К точек Л и В с координатами х — ст и дс + ст. Поскольку система К движется относительно К, то в момент т А не будет совпадать с Л, а В —с В. Но световой сигнал приходит в момент т  [c.142]

ПИЮ сжимающей силы Р, сохраняющей в процессе нагружения вертикальное положение (рис. 13.2). В зависимости от величины силы стержень может иметь прямолинейную или искривленную формы равновесия. Пока величина силы Р меньше некоторого критического значения стержень сохраняет исходную прямолинейную форму равновесия (рис. 13.2, я). При решении задач устойчивости может быть использовап динамический метод, основанный на исследовании колебаний упругой системы относительно исходного положения равновесия. Если верхний конец стержня слегка отклонить, а затем отпустить, то после ряда колебаний стержень возвратится в первоначальное прямолинейное состояние. Таким образом, при Р<Р прямолинейная форма равновесия стержня является устойчивой. Частота малых колебаний стержня по отношению к исходной прямолинейной форме равновесия зависит от величины сжимающей силы Р. При возрастании силы частота уменьшается. Когда величина силы достигнет критического значения, частота колебаний обратится в нуль, и стержень придет в состояние безразличного равновесия. Если теперь слегка отклонить стержень от первоначального прямолинейного состояния и затем отпустить, то он останется в изогнутом состоянии (рис. 13.2, . Таким образом, при Р = Р р прямолинейная форма равновесия становится неустойчивой. Происходит раздвоение (бифуркация) форм равновесия, то есть наряду с прямолинейной возможно существование смежной слегка искривленной формы равновесия.  [c.261]



Смотреть страницы где упоминается термин Состояние системы безразличное относительное : [c.335]    [c.515]    [c.297]    [c.385]   
Пневматические приводы (1969) -- [ c.313 , c.318 ]



ПОИСК



Состояние безразличное

Состояние системы

Состояние системы безразличное



© 2025 Mash-xxl.info Реклама на сайте