Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распыл струи турбулентный

Распыл струи турбулентный 347 Расход потока массовый 71  [c.409]

Различают три основных режима разрушения неза-топленной струи осесимметричный распад волнообразный распад турбулентный распыл.  [c.346]

Пример 8.3. Рассчитать минимальную соответствующую началу турбулентного распыла скорость истечения струи воды через отверстие в топкой стенке диаметром о = 0,5 мм в воздух. Коэффициент поверхностного натяжения на границе вода — воздух а — = 0,073 Н/м, температура воздуха и воды = 20°С.  [c.358]


В дисперсных системах могут иметь место различные виды коагуляции броуновская (для весьма малых частиц), кинематическая (обусловлена разностью скоростей движения капель), турбулентная (вызвана взаимодействием струи капель со сплошной средой, в которую происходит распыл), электрическая (при распыле мелкие капли могут быть заряжены), акустическая, гравитационная (ввиду различной скорости осаждения разных капель в зоне торможения).  [c.197]

Топливо, проходя по спиральным канавкам, получает вращательное движение. Возникающие внутри потока центробежные усилия способствуют быстрому распадению струи после её выхода из сопла. Однако сопла подобных конструкций в современных моделях применяются редко. Последнее объясняется низким коэфициентом <р истечения сопла и относительно малым проникновением струи в сжатый воздух. Сопла этого типа не улучшают качества распыливания даже при повышенных давлениях в ЗиО—500 кг1смК Силы аэродинамического сопротивления газовой среды возрастают с увеличением скорости движения топлива, относительной скорости среды, в которую впрыскивается топливо, плотности воздуха и величины лобовой поверхности струи. Внутренние же силы обусловливаются главным образом поверхностным натяжением топлива. Наравне с этим также должны быть учтены те радиальные возму щения (при выходе из соплового отверстия), которые можно вызвать в обычном сопле при турбулентном потоке топлива, либо применением специальной конструкции распылителя, при истечении из которого значительно усиливаются радиальные составляющие, увеличивающие конус.распыла.  [c.239]

На каждый из упомянутых выше механизмов потерь оказывают влияние свойства топлива и конструкция камеры сгорания. Хотя теоретический удельный импульс системы определяют термодинамические и кинетические характеристики, степень его достижения обусловливается и газодинамическими эффектами. Дробление и испарение капель в основном определяют полноту сгорания и оказывают лишь второстепенное влияние на кинетические потери и потери в пограничном слое. Распыливание топлива определяется конструкцией форсунок и смесительной головки, тогда как скорости испарения зависят от конструкции камеры сгорания и свойств компонентов топлива. С точки зрения экономичности оптимальной является смесительная головка, обеспечиваюп ая такое распыление компонентов топлива, при котором они испаряются с одинаковой скоростью, а испарение завершается в одном поперечном сечении камеры сгорания. Камера при этом должна обеспечить достаточно большую относительную скорость Av между газом и каплями, чтобы полностью испарить последние на располагаемой длине. Характер изменения Аи по длине камеры определяется в значительной степени коэффициентом сужения камеры сгорания Лк/Лкр. Другими факторами, влияющими на распыление топлива, являются перепад давления ка форсунках, начальный размер капель, устойчивость внутрикамерного процесса, характер соударения струй, свойства топлива, самовоспламеняемость и турбулентность газов в камере. Распределение топлива в факеле распыла определяет влияние качества смешения компонентов  [c.169]



Гидравлика и аэродинамика (1987) -- [ c.347 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Распыл

Струя

Струя турбулентная



© 2025 Mash-xxl.info Реклама на сайте