Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические системы динамические линейные с конечным числом

Механизмы, подверженные колебаниям, можно моделировать механической системой с конечным числом степеней свободы, движение которой описывается уравнениями Лагранжа второго рода. Предположение о малости колебаний приводит к линейным динамическим системам с постоянными коэффициентами. Эти уравнения интегрируются в общем )зиде, что позволяет полностью исследовать явления, которые они описывают.  [c.200]

Предварительные замечания. Под упругими распределенными системами понимают упругие механические системы с непрерывно распределенными массой и жесткостью. Они имеют бесконечное число степеней свободы. В отличие от систем с сосредоточенными параметрами (с конечным числом степеней свободы п), динамическое поведение которых можно описать системой обыкновенных дифференциальных уравнений относительно обобщенных координат i/y (I) (/ = 1, 2,. .., а) (см. часть первую), поведение распределенных систем описывают дифференциальными уравнениями в частных производных относительно некоторых функций координат и времени. Распределенные упругие системы называют линейными, если они описываются линейными уравнениями в частных производных. При решении задач динамики для распределенных упругих систем, кроме начальных условий, требуется формулировка краевых условий.  [c.135]


В статье рассматриваются стопорные режимы в машинном агрегате с электроприводом постоянного тока. Механическая система схематизирована в виде дискретной цепной крутильной системы с конечным числом степеней свободы. Рассмотрены уточненное и упрощенное математические описания упруго-диссипативных свойств соединений. Динамические процессы в приводном двигателе с независимым возбуждением исследованы с учетом типовых САР скорости. При этом рассмотрены наиболее характерные примеры САР с линейными и нелинейными (задержанными) связями. На основе рассмотрения динамических процессов в механической системе и в проводном двигателе получена система дифференциальных уравнений движения с кусочно-постоянными коэффициентами при уточненном математическом описании динамических харак-геристик звеньев. Предложен эффективный численно-аналитический метод интегрирования системы уравнений движения. Рассмотрены возможные упрощения при приближенном исследовании стопорных режимов Получена система приближенных интегральнодифференциальных уравнений стопорного режима, для которой разработан метод отыскания решения в аналитическом виде. Изложенное иллюстрировано общим примером. Библ. Ill назв. Илл. 9.  [c.400]

Самые разнообразные системы с одной степенью свободы (механические, электрические, тепловые, акустические, химические и др.) могут быть с точки зрения их динамических свойств с достаточною полнотой представлены небольшим числом условных линейных и нелинейных элементарных динамических систем, классифицируемых (т. е, различаемых друг от друга) по их уравнениям движения. Последние представляют различные частные случаи обыкновенного дифференциального уравнения второго порядка. Таким образом, реальную САР можно представить в виде замкнутого контура, составленного из конечного числа линейных или нелинейных типовых звеньев с о д и о й степенью свободы и звеньев чистого запаздывания . Такое условное изобра -ке-Hile САР носит название ее структурной схемы.  [c.515]


Прочность, устойчивость, колебания Том 3 (1968) -- [ c.0 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.0 ]



ПОИСК



Линейность динамическая

Линейные динамические системы

Механические системы линейные

Механические системы механических систем

Система линейная

Система механическая

Системы динамические



© 2025 Mash-xxl.info Реклама на сайте