Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кориолиса (кинетической энергии формы

Следует отметить, что уравнения Лагранжа без изменения формы могут быть использованы для изучения относительного движения. При этом не требуется дополнительно учитывать силы инерции - переносную и Кориолиса. Достаточно при построении функции Лагранжа вычислять абсолютную кинетическую энергию через относительные координаты и писать обычные уравнения Лагранжа.  [c.237]


Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]


Смотреть страницы где упоминается термин Кориолиса (кинетической энергии формы : [c.149]   
Гидравлика. Кн.2 (1991) -- [ c.2 , c.152 ]



ПОИСК



Кинетическая энергия—см. Энергия

Кориолис

Кориолиса (кинетической энергии

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия формы



© 2025 Mash-xxl.info Реклама на сайте