Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения в конечных разностях полярных координатах

Общее представление о сравнительной производительности методов дает работа (Leidenfrost et al., 1999), в которой авторы постарались снизить влияние посторонних факторов на скорость решения задачи. Выяснилось, что несмотря на общие теоретические основы и высокое, во всех случаях, качество программирования, основные параметры - точность, производительность и требуемая память - различаются в диапазоне почти двух порядков. Наиболее точным методом оказалось конструирование фронтов трассирование лучей дает примерно ту же точность, что и интегрирование уравнения эйконала. Самым быстрым оказалось интегрирование эйконала в полярных координатах конечными разностями в комбинации с методом Рунге-Кутта, самым медленным - трассирование лучей. Наибольших ресурсов памяти требует конструирование фронтов. В конечном счете, для точных расчетов в среде с сильными, но гладкими вариациями скорости и необходимостью обхода принципа Ферма рекомендуется метод конструирования фронтов а для сравнительно простых разрезов оптимальным оказывается интегрирование уравнения эйконала в полярных координатах конечными разностями в комбинации с методом Рунге-Кутта благодаря его непревзойденной вычислительной эффективности.  [c.29]


В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]


Смотреть страницы где упоминается термин Уравнения в конечных разностях полярных координатах : [c.25]   
Теория упругости (1975) -- [ c.83 ]



ПОИСК



Конечные разности

Координаты полярные

Полярный

Разность полярностей

Разность фаз

УРАВНЕНИЯ полярные

Уравнение конечное

Уравнения в конечных разностях

Уравнения в координатах

Уравнения в полярных координатах



© 2025 Mash-xxl.info Реклама на сайте