Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм с упругим звеном для жидкости

У стендов с гидромеханическим возбуждением привод гидравлических звеньев осуществляется от шарнирных (кривошипно-шатунных, кулисных, эксцентриковых, многозвенных шарнирных) или роторных механизмов. Шарнирные механизмы применяют в стендах с частотным диапазоном до 50 Гц. Стенды этого типа, так же как и соответствующие стенды с механическим возбуждением, не пригодны для воспроизведения заданной формы вибрации. При динамических расчетах следует учитывать приведенную упругость объема жидкости между механизмом привода и столом стенда [17].  [c.438]


Для проведения исследований и контроля работы машин и сооружений имеются специальные механизмы И устройства, позволяющие измерять различные механические величины, закон изменения которых характеризует работу машины. Такими механическими величинами являются силы, моменты и давления (газа или жидкости), перемещения отдельных звеньев абсолютные или относительные и деформации звеньев, перемещения, возникающие во время упругих колебаний звеньев или систем звеньев, скорости линейные и угловые, ускорения линейные и угловые.  [c.585]

Теория пневматических систем машин — новый раздел общей теории машин и механизмов. В отличие от исследования машин, состоящих только из механизмов с твердыми звеньями, динамика которых полностью описывается уравнением движения, при исследовании пневматических систем уравнение движения рабочих органов должно быть решено совместно с уравнениями термодинамических процессов изменения состояния сжатого воздуха, являющегося рабочим телом системы. Таким образом, теория пневматических систем использует данные различных отраслей науки — механики твердого тела и механики упругой жидкости. При разработке методов динамического анализа и синтеза пневматических систем используются результаты, полученные как в общей теории машин, так и в термо- и газодинамике. Кроме вопросов динамики, существенными являются также вопросы логического анализа и синтеза пневматических систем, для решения которых используется аппарат математической логики, а также методы структурного синтеза релейных схем.  [c.166]

В гидросистемах машин применяют, как уже было указано, гидроприводы объемного типа, которые обеспечивают благодаря высокому объемному модулю упругости жидкости практически жесткую связь между ведущим и ведомым звеньями гидравлического механизма.  [c.8]

При наличии в жидкости нерастворенного воздуха ухудшаются условия работы гидросистемы (нарушается плавность движения приводимых узлов, ухудшается смазка, усиливается коррозия деталей гидроагрегатов и т. д.), понижается производительность насосов, а также сокращается вследствие гидравлических ударов срок их службы (см. стр. 94). В частности, повышение упругости жидкости, обусловленное присутствием воздуха, вызывает понижение вследствие сжатия рабочей среды жесткости гидравлического механизма, характеризуемой величиной смещения (просадки) его выходного звена под действием силы, приложенной на выходе. Нетрудно видеть, что емкость гидросистемы при повышении давления увеличивается на объем, обусловленный сжатием рабочей жидкости. Следовательно, чтобы давление в рабочей полости силового цилиндра (гидродвигателя) повысилось в начале движения до величины, способной преодолеть приложенную нагрузку, в системы необходимо подать некоторое дополнительное количество жидкости, которое компенсировало бы указанный объем, образовавшийся вследствие сжатия пузырьков воздуха.  [c.40]


Причины, вызывающие необходимость затраты дополнительной энергии, отличаются большим разнообразием. Наиболее существенны потери на преодоление сопротивления относительному движению контактирующих твердых звеньев. Затраты мощности необходимы также для преодоления сопротивления движению звеньев окру.жающей среды — воздуха (особенно при больших скоростях), жидкостей, в частности смазочных материалов, для звеньев, полностью или частично погруженных в них (например, зубчатых колес, шарнирных соединений я т. п.). В процессе работы звенья исш.атывают деформации под воздействием передаваемых нагрузок, в результате чего потенциальная энергия упругих деформаций переходит в тепловую. Такие потери имеют место в упругом контакте колес фрикционных механизмов, в гибких звеньях, соответствующих механизмов (например, ременных). Относительные  [c.321]


Смотреть страницы где упоминается термин Механизм с упругим звеном для жидкости : [c.14]    [c.20]   
Механизмы в современной технике Том 5 (1976) -- [ c.763 ]



ПОИСК



Жидкость упругая

Звено механизма

Механизм с упругим звеном для жидкости с ртутным выключателем

Механизм с упругим звеном для упругим звеном

Механизм с упругим с упругими звеньями

Упругие звенья



© 2025 Mash-xxl.info Реклама на сайте