Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптические волокна градиентный профиль

Вопрос о величине оптической мощности, которая может быть эффективно введена в волокно от протяженного источника, рассматривается в гл. 4. Определяемое формулой (2.1.20) произведение полосы пропускания на расстояние на практике оказывается существенно ниже реального. Из-за рассеяния в волокне большинство наклонных лучей испытывают большое затухание и при прохождении большого расстояния имеет место усреднение наклона траекторий, более близких к оси лучей. Происходящие при этом эффекты будут предметом рассмотрения в 6.6, а здесь отметим, что они приводят к уменьшению дисперсии и в результате в волокнах большой длины она увеличивается пропорционально корню квадратному из длины. Тем не менее дисперсия накладывает строгие ограничения на использование ступенчатых волокон, допуская их применение лишь в сравнительно коротких линиях связи со сравнительно неширокой полосой пропускания. Пример, приведенный в конце гл. 1, подтверждает это. Существует два типа волокон, в которых преодолен этот недостаток (рис. 2.5). Первое из них, так называемое градиентное волокно (рис. 2.5,г), было очень распространено на ранней стадии развития волоконной оптики, и оно будет рассмотрено чуть позже. Изображенное на рис. 2.5, д одномодовое волокно, вероятно, станет основным типом в будущем. Оно будет описано в 2.3 и гл. 5, где также отмечены и возможные преимущества волокна с У-профилем, изображенного на рис. 2.5, е.  [c.39]


Данная глава состоит из двух частей. Первая, более короткая, посвящена средам, в которых изменение показателя преломления п происходит на характерных размерах, существенно превышающих длину волны, в то время как во второй, боЛее длинной, части мы рассматриваем противоположную ситуацию. В первой части завершается анализ градиентных сред, начатый в гл. 2 изучением представления поля вблизи критических областей каустик или точек поворота). Рассмотренные практические примеры касаются распространения оптического излучения в градиентных многомодовых оптических волокнах. Вторая часть в основном посвящена анализу сред с кусочнопостоянными профилями показателя преломления.  [c.155]

В реальных ВС показатель преломления по всему оптическому сечению и длине волокна имеет макроотклонения Ап — = f(x, у, 2) от номинального профиля [47], приводящие к преобразованиям одних мод в другие, в том числе к вырождению части направляемых мод в вытекающие, т. е. к светопотерям на рассеяние. Этот вид рассеяния имеет место во всех ВС — одно- и многомодовых, с ква-зиступенчатым и градиентным профилями показателя преломления [9, 41, 48] — и определяется в основном составом и степенью пространственно-материальной когерентности макроструктуры пары-тройки исходных материалов и особенностями процесса преобразования их в ВС [8, 41, 83].  [c.51]

Модифицированный метод химического осаждения из газовой фазы (M VD) позволяет получать оптические волокна с самыми низкими потерями и самым тщательным контролем профиля показателя преломления. Так, изготовленные этим методом градиентные волокна имеют минимальные потери 0,34 дБ/км на длине волны 1,55 мкм при полосе пропускания более 1 ГГц-км, а минимальные потери одномодовых волокон составляют 0,2 дБ/км на длине волны 1,55 мкм.  [c.118]

Профиль индекса преломления отображает соотношение между индексами ядра и оптической оболочки. Суш ествуют два основных вида профиля ступенчатый и сглаженный (градиентный). Волокно со ступенчатым профилем имеет ядро с однородным показателем преломления. При этом показатель преломления исльп-ывает резкий скачок на границе между ядром и оптической оболочкой. Напротив, в случае сглаженного профиля показатель преломления ядра не является однородным показатель максимален в центре и постепенно спадает вплоть до оптической оболочки. Кроме того, на границе между ядром и оптической оболочкой отсутствует резкий скачок показателя преломления.  [c.52]


Каким бы длинным ни был отрезок отдельного волокна, никакая система связи не может обойтись без необходимости соединения волокон между собой и использования для этой цели специальных устройств. Сразу определим различия между постоянным соединением или сростком, и разъемным соединительным устройством, или оптическим разъемом. Сращивание волокон потребуется при прокладке кабе ля или при его эксплуатации, если кабель окажется поврежденным, а его волокна сломанными. Разъемные соединительные устройства обычно используются в оконечной аппаратуре. По-видимому, источники излучения и фотодетекторы будут постоянно соединены с коротким отрезком волокна и, таким образом, могут подключаться к ВОЛС с помощью стандартного соединительного устройства. Это позволяет раздельно испытывать источники излучения и фотодетекторы и в случае необходимости производить их замену. Сростки и оптические разъемы могут потребоваться как для соединения отдельных волокон, так н одновременного соединения многих волокон, уложенных в кабель. Каждый сросток или разъем будет вносить дополнительные потери, и необходимость минимизации этих потерь приводит к жестким допускам на рассогласование волокон при их соединении. Рассогласование волокон возникает из-за имеющихся в соединяемых волокнах различий в числовой апертуре (Ап), профиле показателя преломления, диаметре сердцевины или ошибок во взаимной ориентации волокон, при их соединении. Эти допуски в самом деле очень жесткие, особенно для одномодовых волокон, у которых диаметр сердцевины составляет 5. .. 10 мкм. Обычно сдвиг соединяемых волокон относительно друг друга приводит к значительно более серьезным последствиям, чем их рассогласование по углу или (в случае разъемов) наличие зазора между торцами. Это хорошо видно на рис. 4.9, где приведены результаты измерений дополнительных потерь при соединении градиентных волокон.  [c.107]

В данном параграфе предположим, что стоимость оптического и электрического ретрансляторов одинакова. В действительности это не так, оптические ретрансляторы в несколько раз дороже, особенно те, которые требуют использования лазера и ЛФД. Однако существует значительная вероятность того, что большая простота и меньшее количество элементов оптического ретранслятора приведут, по существу, не только к уменьшению капиталовложений, но и к повышению их надежности, а также к снижению стоимости обслуживания. Для оценки порядка величины затрат можно принять стоимость двустороннего ретранслятора с пропуск1 ой способностью 2 Мбит/с, равной приблизительно 100. .. 200 дол., а стоимость двустороннего ретранслятора с пропускной способностью 140 Мбит/с — около 5000 дол. Стоимость прокладки многожильного кабетя составляет примерно 0,05 дол. за метр (на 1 пару), а коаксиального кабеля — приблизительно 1 дол. за метр, в зависимости от поперечного сечения. Стоимость самого волокна в составе многоволоконного оптического кабеля может составлять около 1. .. 2 дол. за метр. Волокно, изготовляемое в достаточном количестве с помощью непрерывного технологического процесса, например методом двойного тигля, несомненно дешевле градиентного или одномодового волокна, которые требуют соответственно тщательного и очень точного контроля профиля показателя преломления и диаметра сердцевины. Однако основная часть стоимости кабеля приходится не на стоимость соответственно волокна, а на его изготовление. В результате многоволоконные оптические кабели выгодно использовать в тех случаях, когда нужно обеспечить требуемую информационную пропускную способность. (Было установлено, что при достаточно большом объеме производства, скажем, 10 или 10 километров в год, себестоимость необработанного градиентного и ступенчатого волокна, полученного методом осаждения из газовой фазы, может составлять приблизительно 100 дол. за километр, а необработанное волокно, изготавливаемое методом двойного тигля, могло бы стоить приблизительно 10 дол. за километр. Это показывает, что прогноз может быть оптимистичным.)  [c.433]

Успех применения длинноволновых многомодовых оптических систем связи 3 решающей степени зависит от возможности производства градиентных волокон с малыми отклонениями в профиле показателя преломления, минимальной межмодовой дисперсией и умеренной стоимостью. Достоинство такого волокна — реальность создания дешевой, простой и надежной ВОЛС с высокими параметрами при использовании СД в качестве источника излучения и /7-1-п-фотодиода в качестве фотодетектора. Кроме того, многомодовые волокна легче сращивать и соединять между собой и с другими элементами по сравнению с одномодовыми волокнами. Применение лазерных источников излучения может увеличить информационную пропускную способность и достижимую дальность связи, хотя в этом случае становится проблемой модальный шум. Преимущество использования длинноволрювых ЛФД более проблематично. Б настоящее время их недостатками являются высокий темновой ток в лавинной области и высокий коэффициент шума, поэтому на длинных волнах они имеют мало преимуществ по сравнению с /з-г-л-фотодиодами или вообще их не имеют.  [c.446]



Смотреть страницы где упоминается термин Оптические волокна градиентный профиль : [c.81]    [c.402]    [c.416]    [c.54]    [c.171]   
Дифракция и волноводное распространение оптического излучения (1989) -- [ c.578 , c.581 ]



ПОИСК



Волокна

Градиентное волокно

Натурное исследование возможности уплотнения каналов оптической связи с помощью селективного возбуждения мод Расчет ДОЭ. согласованных с модами градиентных волокон с непараболическим профилем

Оптические волокна



© 2025 Mash-xxl.info Реклама на сайте