Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удар в преграду конечной толщин

Рассмотрим состояние преграды конечной толщины при ударе. Преградой конечной толщины называется область, заполненная средой с известными физико-механическими свойствами и ограниченная двумя поверхностями бесконечной протяженности, которые расположены друг от друга на расстоянии й, принятом за ее толщину.  [c.137]

Вторая глава посвящена рассмотрению напряженного состояния деформируемой среды при распространении волн напряжений. Изучено напряженное состояние в вязкоупругопластическом пространстве при взрыве, а также в вязкоупругопластическом полупространстве при ударе. Рассмотрено распределение напряжений в областях возмущений преграды конечной толщины с учетом отражения и взаимодействия волн.  [c.4]


Удар в преграду конечной толщины  [c.137]

Удар в преграду конечной толщины 137—157  [c.440]

Настоящая глава посвящена исследованию эффектов кратковременного возмущения большой интенсивности (взрыв и удар) в пространстве и полупространстве. Средой является материал, обладающий следующими свойствами упругостью, вязкоупругостью, упругоплас-тичностью и вязкоупругопластичностью. Рассматривается задача о внедрении тела в деформируемую среду и определяется напряжение в среде при внедрении, а также задача об ударе тела в преграду конечной толщины. Решения задач представлены в виде, позволяющем широко использовать при их реализации ЭВМ.  [c.86]

Для расчетов процессов импульсной штамповки листовых заготовок в закрытые матрицы рассмотрим простую модель контактного взаимодействия деформируемой пластины с жесткой преградой. Описанная в 3.2 конечно-разностная модель динамики балки или цилиндрического изгиба пластин представляет собой дискретную систему связанных материальных точек (узлов). Если полагать, что время контактного взаимодействия каждой отдельной узловой массы Шг меньше, чем расчетный интервал шага по времени At для явной схемы расчета, то моделирование контактного взаимодействия можно представить как мгновенное изменение скорости узловой массы в интервале At. При этом ее можно считать свободной и корректировать нормальную составляющую скорости к преграде по направлению и величине в соответствии с заданным коэффициентом восстановления. Это соответствует использованию теории стереомеханического удара [48] для системы материальных точек, реакция внутренних связей между которыми возникает ва время, большее, чем время формирования ударного импульса в отдельной узловой точке-массе. Данное предположение приближенно выполняется для достаточно тонких пластин и их дискретного представления, когда длина звеньев As суш,ественно больше удвоенной толщины. Тогда время единичного контактного взаимодействия оценивается двойным пробегом волны сжатия и растяжения по толщине пластины, а время формирования внутренних сил при взаимодействии соседних узловых точек в процессе деформирования определяется временем пробега упругой волны по длине звена As.  [c.66]


Прочность пространственных элементов конструкций (1980) -- [ c.137 , c.157 ]



ПОИСК



Преграда

Преграда конечной толщины



© 2025 Mash-xxl.info Реклама на сайте