Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условие возникновения ячеистой структуры

Если в расплаве имеются гетерогенные зародыши, которые могут вызывать образование твердой фазы при переохлаждении 8Тс, тогда везде, где в расплаве концентрационное переохлаждение превышает бГс, будут образовываться в большом количестве случайные кристаллы. Таким образом, условие образования случайных кристаллов может быть выражено аналогично условию возникновения ячеистой структуры поверхности раздела  [c.207]


При пайке железа медью с разными зазорами структура, формирующаяся при затвердевании расплава, оказывается при прочих равных условиях различной в малых и больших зазорах. В широких зазорах (0,5—2 мм) кристаллизация происходит с образованием развитой дендритной структуры и имеет характер объемного затвердевания. Содерл<ание железа в осях дендритов достигает 4%, а на периферии падает до 2—2,5 % (массовые доли). Смена форм затвердевания с изменением размера зазора вызывается изменением условий кристаллизации. Согласно существующим представлениям тип кристаллизации сплавов определяется градиентом температуры расплава, а такл<е величиной и протяженностью области концентрационного переохлаждения вблизи фронта кристаллизации. При прочих равных условиях уменьшение зазора, а следовательно, слоя кристаллизующейся жидкости, начиная с определенного момента, приводит к таким изменениям указанных факторов, что дендритная форма кристаллов постепенно уступает место ячеистой, а последняя — преобладающему росту кристаллов с гладкой поверхностью. Окончательная кристаллическая структура металла шва не соответствует первоначальным формам роста кристаллов. Новые границы зерен в шве пересекают в произвольных направлениях дендритные и ячеистые кристаллы. При больших зазорах имеются участки, где вторичные границы совпадают с пограничными зонами первичных дендритов. При малых зазорах структура шва по ширине представляет собой один слой зерен. Возникновение вторичной структуры в литых сплавах связывается с образованием при кристаллизации большого числа дефектов (дислокаций и вакансий), способных перемещаться и группироваться в определенных участках затвердевающего металла.  [c.34]

В работах Малыгина [201—203] развита последовательная теория ячеистых дислокационных структур, образующихся в ГЦК-металлах как на стадии легкого скольжения, так и на второй-третьей стадиях деформационного упрочнения, т.е. в условиях множественного скольжения. Выделяются следующие стадии формирования ячеистой структуры образование сплетений и жгутов дислокаций при одиночном скольжении возникновение дислокационных клубков и стенок на второй и замкнутых дислокационных ячеек на третьей стадиях деформационного упрочнения металлов с ГЦК-решеткой.  [c.112]

После того, как был указан термокапиллярный механизм неустойчивости, стало ясно, что во многих случаях, когда наблюдались ячеистые движения в тонких слоях жидкости со свободной границей, этот механизм играл существенную роль или даже был основным фактором возникновения конвекции. Переоценка проведенных ранее экспериментов коснулась даже известных опытов Бенара, которые в свое время послужили начальным толчком для создания теории конвективной устойчивости. В опытах Бенара наблюдалась ячеистая структура течения в подогреваемых снизу тонких слоях (А 1 мм) расплавленного спермацета. Численные оценки (см. Р 2 з ]) показывают, что в части этих опытов наблюдалось развитое движение при настолько малых разностях температур, что подъемная сила в этих условиях не смогла бы привести к неустойчивости. Это обстоятельство определенно свидетельствует о термокапиллярной природе этих движений.  [c.291]


В работе [199] в одномодовом приближении определены критические условия возникновения ячеистой структуры в модельной системе случайно размещенных винтовых дислокаций. Ячеистая структура рассматривается как диссипативная, возникающая вследствие сильной нелинейности в соотношении между истинным напряжением S, действующим на дислокацию, и ее скоростью ) = >o(S/G)", где п, "Do — константы материала. Теоретически показано, что рост средней плотности дислокаций в кристалле приводит к монотонному увеличению волнового числа субструктуры. Получены оценки минимальной плотности дислокаций, необходимой для образования ячеистой структуры. Так, для поликристаллической меди при 20°С соответстйующая минимальная плотность дислокаций составляет (1,1 1,2) 10 см 2 (экспериментальное значение 1,2 10 смг- ).  [c.111]

В случае больших степеней переохлаждения возникающие в чистых металлах кристаллы растут, не имея правильной кристаллографической огранки и приобретают разветвленную, дендритную форму. При кристаллизации сплавов в условиях возникновения концентрационного переохлаждения структура фронта кристаллизации может носить ячеистый или дендритный характер. При дендритном характере кристаллизации в местах стыков ветвей и соприкосновения растущих соседних дендри-тов, т. е. на границах образующихся зерен, как правило, скапливаются всякого рода примеси. В тех местах, где застывали последние участки жидкого металла, т. е. в междуосных пространствах и на границах соседних дендритов, обыкновенно образуются еще микроскопические усадочные раковины, или поры. Эти микроскопические поры и места скопления примеси — нежелательные последствия дендритного характера кристаллизации, так как могут привести к значительному понижению механической прочности металла. Введение ультразвука изменяет степень переохлаждения расплава и форму фронта кристаллизации, что затрудняет развитие дендритной структуры.  [c.435]


Смотреть страницы где упоминается термин Условие возникновения ячеистой структуры : [c.190]   
Физическое металловедение Вып II (1968) -- [ c.184 ]



ПОИСК



Структура ячеистая

Условия возникновения



© 2025 Mash-xxl.info Реклама на сайте