Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокно гидрофильность

Несмотря на то что связи между аппретом и поверхностью наполнителя подвержены гидролизу, обратимый характер этой реакции препятствует полной потере адгезии, пока модифицированная силаном смола сохраняет целостность на межфазной границе. Под воздействием осевых или тангенциальных напряжений обратимые связи рвутся и восстанавливаются в соседних точках. Благодаря этому сохраняется подвижность молекул в двух направлениях вдоль поверхности стеклянного волокна и происходит релаксация напряжений без ухудшения адгезии. Динамическое равновесие процесса гидролиза не только предотвращает разрушительное действие воды, но делает необходимым ее присутствие на гидрофильной поверхности раздела для релаксации термических напряжений, возникающих при охлаждении стеклопластика.  [c.212]


Были проведены широкие исследования по обработке поверхности графитового волокна с целью улучшения его адгезии к смолам, оцениваемой по прочности композитов на сдвиг. Наиболее эффективным оказалось окисление графита газообразными и жидкими окислителями [15]. Окисление способствует возникновению на поверхности графита характерных для гидрофильных поверхностей карбоксильных и гидроксильных групп. Улучшение адгезии полимеров к окисленному графиту объясняется увеличением его суммарной поверхности, улучшением смачивания ее смолой и образованием связей между смолой и функциональными группами на поверхности графита.  [c.216]

Накопление воды на гидрофильных центрах поверхности стеклянных волокон может привести к возникновению осмотического давления, достаточного для расслоения композиционного материала. Связь на границе раздела волокно — полимерное связующее, а  [c.32]

Особый вид волокнистого материала представляют собой плетеные или вязаные чулки (пустотелые шнуры), являющиеся основой лакированных трубок. Структура волокнистых материалов предопределяет некоторые их видовые свойства. К числу таковых относятся большая поверхность при сравнительно малой толш,ине в исходном состоянии, неоднородность, вызванная наличием макроскопических пор, т. е. промежутков между отдельными волокнами и нитями и связанная с ней гигроскопичность. Сами растительные волокна обладают известной пористостью, микроскопической и субмикроскопической, которую образуют, например, мельчайшие капилляры. Некоторые волокнистые материалы имеют в своем составе гидрофильные ( водолюбивые ) составные части, способные поглощ,ать влагу из воздуха, набухая при этом и образуя коллоидные системы примерами таких (объемно-гигроскопичных) волокон является клетчатка и др. Материалы, состоящие из волокон, не обладающих объемной гигроскопичностью, как правило, абсорбируют влагу из воздуха за счет наличия пор и смачиваемости поверхности волокон водой, что вследствие сильно развитой поверхности волокон может послужить причиной значительной общей гигроскопичности. Само собой понятно, что материалы из объемно-гигроскопичных волокон будут обладать особенно большой гигроскопичностью. У тканей электрическая прочность определяется пробоем воздуха в макроскопических порах. В бумагах и картонах образование крупных сквозных пор менее вероятно. Так или иначе, но наличие воздушных пор приводит к тому, что все пористые волокнистые материалы обладают сравнительно низкой электрической прочностью, тем меньшей, чем меньше структурная плотность материала. В связи с вышеописанными общими свойствами волокнистых материалов в большинстве случаев их применения требуется пропитка, в результате которой повышается электрическая прочность и снижается скорость поглощения влаги.  [c.164]


Наряду со стекловолокном основными упрочнителями композитов являются углеродные (графитовые) волокна, нитевидные кристаллы и волокна нз высокопрочных металлов, таких, как бор. Эти волокна менее чувствительны к воде, чем стеклянные, уже потому, что они не так гидрофильны. Вайетт и Эшби [78] сравнивали действие воды на полиэфирные композиты, армированные волокнами углерода и Е-стекла. В обоих случаях наблюдалось набухание смолы, однако интенсивно ра сслаивался только стеклопластик. Предполагалось, что волокна из металлов или из окислов металлов не более гидрофильны, чем кварц, а, как уже отмечалось [2], кварцевые волокна не расслаиваются при выдержке композита в воде. Тем не менее металлы и окислы металлов (в отличие от углерода) подвержены коррозии под напряжением [76]. Очевидно, накопление воды на поверхности раздела между окислом металла и полимером, которое является следствием гидрофильного загрязнения, приводит к образованию дефектов и разрыву волокна.  [c.115]

Даже при максимальной адгезии полимеров к немодифициро--ванным графитовым волокнам композиты на их основе имеют невысокую прочность на сдвиг вследствие разрушения по слабым пограничным слоям графита. Окисление применяется прежде всего для удаления потенциально слабого пограничного слоя с поверхности графита. На возникающей в результате этого гидрофильной поверхности в присутствии воды могут образовываться гидролитически равновесные связи с полярными смолами, что в свою очередь приводит к снижению усадочных напряжений в материале. В случае композитов из оксидированного графита с неполярными смолами для релаксации напряжений и сохранения механических, свойств во влажной среде необходима, вероятно, обработка наполнителя силановыми аппретами.  [c.217]

Прочность адгезионной связи между волокнами и матрицей оказывает решающее влияние на прочность композиций с короткими волокнами. Необходимо добиваться максимальной сдвиговой прочности по границе раздела волокно — полимер. В промышленности стеклопластиков успешно применяются аппреты, способствующие повышению адгезионной прочности стеклянных волокон к полиэфирным и эпоксидным смолам. Физико-химические процессы, протекающие при аппретировании стеклянных волокон, изучены достаточно хорошо [63]. В качестве аппретов обычно используют кремнийорганические соединения, в которых органический радикал совместим с полимерной матрицей. При гидролизе одной или нескольких связей =Si—OR в молекуле аппрете образуются силанольные группы =Si—ОН, способные реагировать с аналогичными группами гидрофильной поверхности стеклянных волокон. Теоретически мел<ду стеклом и полимерной матрицей образуются ковалентные связи. Важнейшей особенностью стеклопластиков с обработанными аппретами стеклянными волокнами является значительно меньшая потеря ими прочности и жесткости при выдержке во влажной среде. Аппреты повышают прочность при изгибе и сдвиге однонаправленных стеклопластиков, однако они оказывают значительно меньший эффект на прочность при растяжении. В полимерных композициях с короткими волокнами использование аппретов целесообразно, если они обеспечивают заметное улучшение их свойств. В полиэфирных и эпоксидных стеклопластиках адгезионная прочность между стеклянным волокном и связующим достаточно высока и без использования аппретов вследствие хорошего смачивания волокон жидкими смолами, однако в термопластах, наполненных волокнами любых типов, значительно труднее добиться хорошего смачивания волокон полимерами и высокой адгезионной прочности между ними. Большое число исследований проведено по нахождению усло-, ВИЙ аппретирования стеклянных волокон, вводимых в термопла-  [c.97]

Фильтроткани из полиуретановых волокон. Полиуретаны по химическому строению близки к полиамидам, но отличаются от них тем, что содержат полиамидную группировку с дополнительным атомом кислорода —ООСЫН— (уретановая группировка). Для производства фильтротканей из числа полиуретанов наиболее подходящим является полимер под названием перлон и, отличающийся высокой гидрофобностью. Перлоновые волокна довольно грубы и для смягчения их обрабатывают формальдегидом, повышающим гидрофильность волокон, которые становятся мягче и шелковистее.  [c.19]

Стекловолокно плохо сопротивляется истиранию, изгибу и удару. Гигроскопичность стекловолокна незначительна, так как оно не имеет капиллярных полостей. Адсорбированная вода понижает поверхностную энергию стекловолокна, которое по своей природе является гидрофильным. Поэтому в воде прочность волокна снижается. В термическом отношении стекловолокно вполне устойчиво, некоторое снижение его прочности наблюдается лишь при температуре выше 200° С. Химическая стойкость стекловолокна зависит от состава стекломассы. Для фильтрации кислых, нейтральных и слабощелочных сред изготовляют стекловолокно из алюмоборосиликатной и алюмомагнезиальной стекломассы.  [c.27]


Прй выборе оптимального состава, наполненных термопластов, содержащих органические волокна, огромное значение приобретает повышение смачиваемости и прочности сцепления на границе полимер — волокно. Так, например, предложено обрабатывать гидрофильные волокна винол, предназначенные для наполнения полиэтилена, кремнийорганическими соединениями, содержащими наряду с алкильными или мет-акрильными группами и алк-окси- или ацетоксигруппы.  [c.207]


Смотреть страницы где упоминается термин Волокно гидрофильность : [c.94]    [c.96]    [c.111]    [c.236]    [c.107]    [c.179]    [c.189]    [c.193]    [c.149]    [c.187]   
Конструкционные материалы Энциклопедия (1965) -- [ c.234 ]



ПОИСК



Волокна

Гидрофильность



© 2025 Mash-xxl.info Реклама на сайте