Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Кельвина для многосвязных областей

Чтобы получить физическое истолкование этой теоремы, необходимо сначала изложить предложенный Кельвином способ, при помощи которого можно получить любое циклическое безвихревое движение капельной жидкости в многосвязной области.  [c.76]

Если Ц. с. равна кулю по любому контуру, проведённому внутри жидкости, то течение жидкости— звихре-вое, или потенциальное, и потенциал скоростей—однозначная ф-ция координат. Если же Ц. с. по нек-рым контурам отлична от нуля, то течение жидкости либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенц. течения в многосвязной области Ц, с. по всем контурам, охватывающим одни и те же твёрдые границы, имеет одно и то же значение. Ц. с. широко используется как характеристика течений идеальной (без учёта вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Ц. с. по замкнутому жидкому контуру остаётся постоянной во время движения, если, во-первых, жидкость является идеальной, во-вторых, давление (газа) жидкости зависит только от плотности, в-третьих, массовые силы потенциальны, а потенциал однозначен. Для вязкой жидкости Ц. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляц. обтеканий контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется по Жуковского теореме и прямо пропорционально значению Ц. с.,  [c.441]


Если Ц. с. равна пулю по любому контуру, проведенному внутри жидкости, то течение жидкости — безвихревое, или потенциальное течение, и потенциал скоростей — однозначная ф-ция координат. Если же Ц. с, по нек-рым контурам отлична от нуля, то течение жидкости — либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенциального течения в многосвязной области Д. с. по всем контурам, охватывающим одни и те же твердые границы, имеет одно и то же значение. Д, с, широко иснользуется как характеристика течений идеальной (без учета вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Д. с, по замкнутому жидкому контуру остается постоянной во все время движения, если 1) жидкость является идеальной, 2) давление (газа) жидкости зависит только от плотности и 3) массовые силы — потенциальны, а нотенциал однозначен. Для вязкой жидкости Д. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляционном обтекании контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется но Жуковского теореме и прямо пропорционально значению Ц. с., плотности жидкости и значению скорости потока на бесконечности. При плоском обтекании идеальной жидкостью крыла с острой задней кромкой величипа Д. с. определяется Чаплыгина — Жуковского постулатом. При обтекании крыла конечного размаха, хорда к-рого в плане меняется, Д. с. вдоль размаха крыла также меняется.  [c.401]


Механика жидкости и газа (1978) -- [ c.162 ]



ПОИСК



Кельвин

Область многосвязная

Теорема Кельвина



© 2025 Mash-xxl.info Реклама на сайте