Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера ветвление решений

При решении проблемы числа форм равновесия системы в основном стараются выяснить пределы изменения параметров нагрузки, при которых данная упругая система имеет единственную форму равновесия. Можно было бы предполагать, что эти пределы определяются первой точкой ветвления решений тех нелинейных уравнений, которые описывают деформацию упругой системы, а сама первая точка ветвления определяется как наименьшее собственное значение соответствующей линеаризованной краевой задачи. На пути отождествления этих трех понятий точки, определяющей область существования единственной формы равновесия упругой системы точки ветвления решений уравнений деформированного состояния упругой системы и наименьшего собственного числа линеаризованной задачи — и решались задачи устойчивости еще со времени Эйлера [27]. В некоторых случаях такая концепция получила теоретическое обоснование. Эти вопросы рассматривались в известной работе Ф. С. Ясинского [28] и окончательно решены для шарнирно-опертого стержня в работе [1]. Вместе с этим совершенно очевидно, что отождествление всех трех указанных понятий далеко не всегда правомерно, и этот вопрос должен быть рассмотрен в первую очередь.  [c.257]


Изучение ветвлений в нелинейной теории упругости (да и вообще в математическом естествознании) было, как уже говорилось, начато Л. Эйлером [33]. Содержание настоящего параграфа посвящается установлению связи между ветвлением решения ПОУ  [c.320]

Основные результаты по неинтегрируемости уравнений Эйлера-Пуассона принадлежат В. В. Козлову, С. Л. Зиглину, С. В. Болотину. Они обсуждаются в книгах [92, 97] и связаны с расщеплением асимптотических поверхностей, ветвлением решений на комплексной плоскости времени, рождением большого числа невырожденных периодических решений. Вершиной этого направления являлась бы теорема, что общие случаи существования дополнительного вещественно-аналитического интеграла исчерпываются случаями Эйлера, Лагранжа и Ковалевской, а для частных интегралов к ним надо добавить случай Горячева-Чаплыгина. К сожалению, в полном объеме эта гипотеза до сих пор не доказана, несмотря на отдельные и довольно существенные продвижения [97].  [c.90]


Нелинейное деформирование твердых тел (2000) -- [ c.125 ]



ПОИСК



Ветвление решений

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте