Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Произведение тензоров внешнее, тензорное

Тензорным (внешним) произведением тензора ранга р на  [c.393]

Складывать и вычитать можно тензоры одного ранга, компоненты которых имеют одинаковое строение индексов. При этом получается тензор того же ранга, компоненты которого равны сумме (разности) соответствующих компонент заданных тензоров. Тензорным, или внешним произведением тензоров является тензор, компоненты которого равны произведениям компонент тензоров-сомножителей. Индексы в обозначении компонент тензора-произведения повторяют индексы в обозначении компонент первого, а затем второго сомножителя. Поэтому умножать можно тензоры любого ранга с любым строением индексов. Ранг тензора-произведения равен сумме рангов тензоров-сомножителей. На-  [c.39]


Что такое тензорное (внешнее) и скалярное (внутреннее) произведение тензоров Приведите примеры. Однозначно ли скалярное произведение тензоров  [c.42]

Упражнение 1.11.2. Доказать, что градиент не зависящего от системы отсчета скаляра есть не зависящий от системы отсчета вектор что собственные числа, след и определитель не зависящего от системы отсчета тензора являются не зависящими от системы отсчета скалярами что собственные векторы такого тензора являются не зависящими от системы отсчета векторами что скалярное произведение двух не зависящих от системы отсчета векторов является не зависящим от системы отсчета скаляром и что тензорное произведение и внешнее произведение не зависящих от системы отсчета векторов являются не зависящими от системы отсчета тензорами.  [c.59]

Внешнее умножение тензоров (тензорное произведение)  [c.24]

Производится также свертывание тензора с тензором, Эта операция, называемая внутренним произведением тензоров, состоит в предварительном тензорном (внешнем) умножении тензоров, а затем полученный мультипликативный тензор свертывается по индексам, принадлежащим тензорам-сомножителям. Например, перемножая тен-зорно два вектора (а ) и (6 ), а затем свертывая полученную диаду ( i/) = (ад (bj), приходим к инварианту  [c.394]


Теория пластичности (1987) -- [ c.99 ]



ПОИСК



Внешнее произведение

Произведение

Произведение тензоров

Произведение тензоров внешнее

Тензорное произведение



© 2025 Mash-xxl.info Реклама на сайте