Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрические и магнитные величины и единицы их измерений

Международная система единиц измерений содержит основные и дополнительные единицы. Система универсальная, так как затрагивает измерения всевозможных величин механических, тепловых, световых, электрических, акустических и магнитных. Основными единицами измерения установлены метр (м) —для измерения длины килограмм (кг) — для измерения массы вещества, секунда (се/с) —для измерения времени градус Кельвина (° К) — для измерения термодинамических температур ампер (а) —для измерения силы электрического тока свеча св) — для измерения силы света и др.  [c.200]


Международная система единиц по ГОСТ 9867—61 введена с 1 января 1963 г. Эта система связывает единицы измерения механических, тепловых, электрических, магнитных и других величин. В Международной системе единиц приняты шесть основных единиц — метр, килограмм, секунда, ампер, кельвин, моль, кандела две дополнительные единицы — радиан и стерадиан и 25 важнейших производных единиц (табл. 1-1). Более полные данные fo единицах Международной системы,применении единиц других систем и внесистемных единиц приведены в ГОСТ по отдельным видам измерений ГОСТ 7664—61 Механические единицы , ГОСТ 8550—61 Тепловые единицы , ГОСТ 8033—56 Электрические и магнитные единицы , ГОСТ 7932—56 Световые единицы , ГОСТ 8849—58 Акустические единицы .  [c.5]

Международная система СИ считается наиболее совершенной и универсальной по сравнению с предшествовавшими ей. Кроме основных единиц, в системе СИ есть дополнительные единицы для измерения плоского и телесного углов — радиан и стерадиан соответственно, а также большое количество производных единиц пространства и времени, механических величин, электрических и магнитных величин, тепловых, световых и акустических величин, а также ионизирующих излучений.  [c.496]

В период с 1936 по 1938 гг. работа по единицам была сосредоточена в Комиссии по единицам мер при группе технической физики отделения технических наук Академии наук СССР. Комиссия рассмотрела вопрос о системах единиц физических величин и приняла ряд рекомендаций. Хотя работа комиссии и не завершилась изданием новых нормативных документов, она сыграла важную роль в подготовке изданных позднее Положения об электрических и магнитных единицах, Положения о световых единицах и новых стандартов на единицы измерений физических величин.  [c.13]

Согласно системе СИ основными единицами измерения электромагнитных величин являются метр, килограмм, секунда и ампер. Построенная на этих единицах система электромагнитных величин называется МКСА (см. табл. 1.18 на стр. 19). Систему единиц МКСА обычно применяют при написании уравнений электромагнитного поля в рационализированной форме. Рационализация уравнений электромагнитного поля имеет своей целью исключение множителя 4я из наиболее важных и часто применяемых уравнений. В системе МКСА при рационализированной форме уравнений электромагнитного поля электрическая е и магнитная Цо постоянные принимаются равными  [c.21]


Международная система единиц измерения физических величин - универсальная система, связывающая воедино единицы измерения механических, тепловых, электрических, магнитных и других величин.  [c.144]

Сейчас государственные эталоны имеются во всех важнейших областях измерений, наиболее широко применяемых в народном хозяйстве страны. Это государственные эталоны единиц длины, массы, температуры, времени, силы света и электрического тока, т. е. единиц основных физических величин. Государственные эталоны созданы и для таких областей измерений, как измерения силы, давления, ряда электрических и магнитных величин, параметров оптических, ионизирующих излучений и др.  [c.152]

СИ предусматривает установление единообразия в единицах измерения и содержит шесть основных единиц и две дополнительные. Эта система охватывает измерения всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических.  [c.5]

Международная система единиц предусматривает установление единообразия в единицах измерения и содержит семь основных единиц и две дополнительные. Эта система охватывает измерение всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических. Основные, дополнительные и некоторые производные единицы приведены в табл. 1.  [c.4]

Международная система единиц содержит шесть основных, единиц и две дополнительные такое количество основных и дополнительных единиц делает систему универсальной, так как. она затрагивает измерения всевозможных величин механических, тепловых, электрических, магнитных, световых, акустических. Основными единицами установлены метр (м)—для измерения длины килограмм (кг) —для измерения массы секунда (сек.)—для измерения времени градус Кельвина (°К)—для-измерения температуры ампер (а) —для измерения силы электрического тока свеча (се)—для измерения силы света.  [c.57]

Международная система единиц измерения физических величин является единой универсальной системой, охватывающей все отрасли науки, техники и народного хозяйства этой системой воедино связаны единицы измерения механических, тепловых, электрических, магнитных и других величин.  [c.19]

В табл. 2. 2 указаны лишь важнейшие производные единицы. Все остальные недостающие единицы для измерения механических, тепловых, электрических, магнитных, акустических, световых и других величин следует брать из Государственных стандартов на отдельные области измерения.  [c.22]

Единицы СИ в области измерений электрических и магнитных величин приведены в табл. 2.9.  [c.54]

В области измерений электрических и магнитных величин (включая радиотехнические) созданы и функционируют 32 эталона. Они перекрывают не только большой диапазон значений измеряемых величин, но и широкий спектр условий их измерений, прежде всего частоты, доходящей до десятков гигагерц. Основу составляют эталоны, которые наиболее точно воспроизводят единицы и определяют размеры остальных производных единиц. Это государственные первичные эталоны единиц ЭДС, сопротивления и электрической емкости. Первые два разработаны недавно и основаны на квантовых эффектах Джозефсона и Холла.  [c.38]

СИ образованы по уравнениям в нх рационализованной форме. При этом все уравнения, определяющие производные величины, не содержат числовых коэффициентов, отличающихся от единицы, и поэтому образовать по ним единицу измерения не сложно. С другой стороны, электрические и магнитные единицы систем, основанных на сантиметре, грамме и секунде (СГСЕ, СГСМ, СГСео, СГС до, симметричная СГС), образованы по уравнениям в их классической (нерационали-зованной) форме. При определении соотношений между единицами этих систем и единицами СИ приходится учитывать влияние рационализации уравнений при этом возникают сложности, так как существуют различные ее интерпретации. Этому вопросу посвящено большое число работ [15—20], однако рассмотрение их не входит в задачи настоящей статьи.  [c.44]


В ГОСТ 8033—56 на электрические и магнитные единицы регламентировано применение двух систем единиц, В качестве основной принята абсолютная практическая система единиц МКСА с четырьмя основными единицами (метр, килограмм, секунда, ампер). Допускается также применять для электрических и магнитных измерений абсолютную систему СГС (симметричную). Преимущества системы МКСА состоят в том, что размеры ее единиц удобны для практики, кроме того, единицы образуют одну общую сиетему для измерений механических, электрических и магнитных величин. В этой системе сохранены все общепринятые практические электромагнитные единицы (ампер, вольт, ом, кулон, фарада, генри, вебер). Система МКСА установлена для рационализованной формы уравнений электромагнитного поля. Рационализация уравнений электромагнитного поля исключает множитель 4я из наиболее важных и часто применяемых уравнений. В стандарте даны таблицы основных и производных единиц системы МКСА и соотношения между единицами СГС и МКСА. Стандартом допускается применение широко распространенной в атомной физике внесистемной единицы энергии—электрон-вольта, а также кратных единиц—килоэлектронвольта и мегаэлектрон-вольта.  [c.16]

Лит. ГОСТ 9867—61. Международная система единиц ГОСТ 7663—55. ОЗразование кратных и дольных единиц измерений ГОСТ 7664—61. Механические единицы ГОСТ 8033—56. Электрические и магнитные единнцы ГОСТ 8550—61. Тепловые единицы ГОСТ 7932—56. Световые единицы ГОСТ 8849—63. Акустические единицы ГОСТ 8848—63. Единицы радиоактивности и ионизирующих излучений Б у р-д у н Г. Д., Единицы физических величин, 3 изд., М., 1963 Единицы измерешга н обо.значе шя фи-зи-  [c.494]

Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (н) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сек массе I кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице.  [c.9]

Как сказано было выше, электростатика и магнитостатика излагались независимо друг от друга. За ними обычно шли законы постоянного тока, и лишь в конце появлялись магнитное действие тока (обычно в виде действия на магнитную стрелку), электромагнитная индукция и т.д. Такой порядок изложения создавал трудности для понимания существа явлений, приводил к путанице основных понятий. В особенности это проявлялось в вопросе о системах единиц. Построенные независимо друг от друга, единицы электрических и магнитных величин образовывали две группы, обе находящиеся в рамках системы СГС. Эти группы не вступали бы друг с другом в противоречие, если бы не существовало магнитного поля тока. Благодаря наличию последнего сила тока входит не только в определяющее соотношение (7.2), но и в выражения для действия тока на магнитную стрелку или для взаимодействия токов. Поскольку в этих выражениях для всех остальных величин существовали ранее установленные единицы СГС, то определялась единица силы тока, отличная от единицы, основанной на формуле (7.2), при измерении заряда электростатическими единицами. Таким образом возникли две СГС системы электрических и магнитных величин — электростатическая (СГСЭ) и электромагнитная (СГСМ), о построении которых сказано будет ниже.  [c.185]

Кроме систем преимущественного применения, действующими стандартами на единицы измерений допускается также применение системы СГС для измерения механических и акустических величин и СГСС — для электрических и магнитных величин (ГОСТы 7664—61, 8849—58 и 8033—56)  [c.285]

Следует особо подчеркнуть, что большинство единиц Международной системы (СИ) не являются новыми для Советского Союза. Официально принятые в СССР государственными стандартами системы механнческнх единиц МКС, электрических и магнитных единиц МКСА, тепловых единиц МКСГ, световых единиц МСС, акустических единиц МКС содержат единицы измерения, полностью совпадающие с единицами измерения однородных величин системы СИ.  [c.4]

Иреимуществамп системы МКСА являются удобные для практики размеры единиц единство системы для измерения механических, электрических и магнитных величин сохранение в этой системе всех общепринятых практических электромагнитных единиц (ампер, вольт, ом, кулон, фарада, генри, вебер).  [c.64]

Для электрических и магнитных величин ГОСТ 8033—61 предусматривает преимущественное ирименение рацио-нализованнох" мютемы единиц МКСА с четырьмя основными единицами измерения метр — килограмм — секунда —амнер. Все единицы полностью совпадают с единицами измерения однородных электрических и магнитных величин в Международной системе единиц.  [c.104]


Осуществление поставленной Петром I задачи прорубить окно в Европу , повлекшее за собой чрезвычайное расширение культурных, научных, производственных и торговых связей с Западом, отразилось на метрологии как петровской, так и послепетровской эпохи. Развитие системы русских мер получило ряд особенностей, из которых наиболее важными явились значительное увеличение числа малых мер, повышавших точность измерений, и сближение русских мер длины с английскими, выразившееся в установлении простых соотношений между ними (путем небольшого изменения значений русских мер) и во введении некоторых английских мер, что отразилось также на мерах площади и объема. Особенно важным явилось введение новых единиц, предназначенных для неиз-мерявшихся ранее величин (механических, тепловых, электрических, магнитных).  [c.103]

ЭЛЕКТРИЧЕСКИЕ ЕДИНИЦЫ — единицы изме рення электрических величин. ГОСТ НО.МЗ—50 устанавливает применение след, систем 3. е. и виеспстем-пых единиц а) как основной — МКС.Л систе.иы единиц, входящей составной частью в Международную систему единиц (СИ) в соответствии с ГОСТ 9867—(И электрич. и магн. единицы системы МКСА применяются в рационализованной форме (см. Рационализация урач-нений электромагнитного ноля), б) как допускаемо — СГС систе.иы единиц (симметричной), в к-рой Э. е. соответствуют системе СГСЕ, а магнитные — сштеме ( ГСМ в) трех внесистемных единиц измерения энергии электронвольта (эв), килоэлектронвольта (> вс) и мегаэлектронвольта (Мэв) (1 эе = 1,60207 1() 1 > д ис). Важнейшие электрич. единицы (ГОСТ 9867—61) приведены в табл.  [c.445]

В СССР МКС.А. с. о. принята в качестве основной (ГОСТ 8033—50 .Электрические и магнитные единицы ) для измерения электрич. и магнитных величин ею пользуются при рационализированной форме ур-ний электромагнитной ноля (когда множитель 4л устранен из наиболее важных и часто применяемых ур-ний), В соответствии с этим принято след аощее значение для электрич. постоянной Вц = 10 /4яс2 ф/ль и магнитной постоянной Ро = 4я- 10 гн/л1, где с — значение скорости света в вакууме, выраженное в ль/сек.  [c.252]


Смотреть страницы где упоминается термин Электрические и магнитные величины и единицы их измерений : [c.59]    [c.226]    [c.234]    [c.5]    [c.12]    [c.496]    [c.71]    [c.181]    [c.607]    [c.107]    [c.76]    [c.64]    [c.21]    [c.326]    [c.285]    [c.115]    [c.130]    [c.418]    [c.326]   
Смотреть главы в:

Физические основы устройства и работы авиационных приборов  -> Электрические и магнитные величины и единицы их измерений



ПОИСК



224 — Единицы измерени

Величины — Измерения

ЕДИНИЦЫ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ВЕЛИЧИН

Единица величины

Единицы измерения

Единицы измерения величин

Единицы измерения магнитных

Единицы измерения электрические

Измерение электрических величин

Магнитные величины

Магнитные единицы

Основы электрических измерений. (Е. А. Мелкобродов) Электрические и магнитные величины и единицы их измерений

Электрические единицы

Электрические и магнитные величины

Электрические измерения



© 2025 Mash-xxl.info Реклама на сайте