Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодические решения других сортов

ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ ДРУГИХ СОРТОВ 453  [c.453]

Периодические решения других сортов  [c.453]

ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ ДРУГИХ СОРТОВ 457  [c.457]

ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ ДРУГИХ СОРТОВ 459  [c.459]

ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ ДРУГИХ СОРТОВ 461  [c.461]

Итак, мы будем иметь три точки точку С", близкую к О, А, близкую к Л, В, близкую к В. Эти точки соответствуют трем периодическим решениям, первое из которых является периодическим решением первого сорта, а два других — второго сорта.  [c.308]


При ц = О планетный вариант неограниченной задачи трех тел вырождается в две задачи двух тел (одна задача двух тел с массами то п ту = О, вторая задача двух тел с массами то и тг = 0). Очевидно, что среди возможных движений в вырожденной задаче имеются кеплеровские эллипсы, описываемые нулевыми массами т, = тг = 0. Пусть, в частности, кеплеровские орбиты суть компланарные окружности. Пуанкаре доказал [2], что при 11фО в плоской неограниченной задаче трех тел существуют периодические решения, близкие к круговым. Точнее, взаимные расстояния между тремя телами будут периодическими функциями времени, а чтобы координаты каждого тела были периодическими функциями времени, необходимо рассматривать равномерно вращающуюся (с конечной угловой скоростью) систему координат. В неподвижной системе координат координаты трех тел не будут, вообще говоря, периодическими функциями времени. Если ввести для таких периодических решений оскулирующий кинематический параметр — эксцентриситет, то он имеет порядок величины ц. Эти плоские перподиче-ские решения задачи трех тел были названы Пуанкаре решениями первого сорта, и они образуют четырехпараметрическое семейство решений. Пуанкаре показывает, что все множество периодических решений не богаче, чем однократное бесконечное множество периодических решений, так как одни семейства решений переходят в другие с помощью элементарных преобразований. Заметим также, что решение Хилла является частным случаем периодических решений первого сорта Пуанкаре.  [c.792]

Можно было бы считать, что это решение также относится к периодическим решениям третьего сорта задачи трех тел, и Пуанкаре в своих Methodes nouvelles даже не отмечает каких-либо других решений, относящихся к периодическим орбитам третьего сорта. Между тем, как нам представляется, великий математик допустил здесь ошибочный вывод. В действительности никаких периодических орбит третьего сорта, которые при ц = О были бы круговыми, не существует.  [c.452]


Смотреть страницы где упоминается термин Периодические решения других сортов : [c.539]   
Смотреть главы в:

Небесная механика  -> Периодические решения других сортов



ПОИСК



Решение периодическое

Решения периодические 1-го сорта



© 2025 Mash-xxl.info Реклама на сайте