Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дискретное преобразование Фурье в конечных пределах

Основную роль при исследовании рассматриваемых ниже задач играет преобразование Фурье и некоторые его модификации (преобразования Лапласа, Ханкеля) и соответствующие этим преобразованиям ряды, которые также можно рассматривать как (дискретные) формулы обращения для интегральных преобразований с конечными пределами.  [c.48]

Дискретное преобразование Фурье в конечных пределах  [c.48]


Чтобы обеспечить аналогию между этим новым сценарием и дифракцией, на рис. 4.7, а представлены прямоугольная функция и преобразование от нее, обозначенные теперь в соответствии с новой переменной. Однако, как мы уже знаем, основная компонента прямоугольной функции не периодическая (т.е. нулевой частоты) с постоянной амплитудой, вследствие чего функция полностью положительна. Более подходящим примером для рассмотрения световых волн является пара преобразований на рис. 4,7,6. Здесь показана чистая синусоидальная волна с частотой Vi, представленная в виде цуга конечной продолжительности и длины. Она имеет амплитудно-частотное распределение, размытое около V] так, что суммирование дает группу волн (или волновой пакет), которая представляет собой профиль в пределах цуга, но суммарная амплитуда равна нулю с любой стороны от него. Если цуг длинный, то частотное размытие невелико и наоборот, т. е. взаимосвязь здесь такая же, как в случае с парой пространственного преобразования Фурье. Строго говоря, монохроматический свет предполагает наличие цугов бесконечной длины, но это условие физически не выполнимо, поскольку свет излучается атомами дискретно, в виде фотонов в результате все спектральные линии имеют конечную ширину. Если на рис, 4.7, б ширина частотного распределения взята в основном в пределах Vi + 5v, то мы имеем  [c.77]


Смотреть главы в:

Нестационарные упругие волны  -> Дискретное преобразование Фурье в конечных пределах



ПОИСК



ДПФ (дискретное преобразование

Дискретное преобразование Фурье

Дискретность

Конечные преобразования

Преобразование Фурье

Фурье (БПФ)



© 2025 Mash-xxl.info Реклама на сайте