Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геометрическая иллюстрация теоремы

Если обратиться к геометрической иллюстрации (понимая условность подобного приема), то неустойчивость невозмущен- ого состояния при условиях, указанных в теореме Четаева, станет очевидной. На рис. 7.3 изображен в некоторый момент времени кусок поверхности, уравнение которой имеет вид  [c.441]

Второй метод, называемый геометрическим, основан на применении правил геометрии и некоторых формул тригонометрии. Пользуясь этим методом, не следует стремиться точно построить чертеж, так как теперь он будет служить лишь для иллюстрации решения задачи о сложении двух сил, приложенных в одной точке. Из треугольника ABD согласно теореме косинусов найдем модуль равнодействующей  [c.27]


Л1Ы-ма/ериальных точек. При рассмотрении различных видов движения твердого тела устанавливается число его степеней свободы, выбираются обобщенные координаты. Далее разбирается вопрос о распределении скоростей. Формулы для скорости произвольной точки тела рассматриваются как иллюстрация общей формулы, выражающей скорость точки, принадлежащей системе, через обобщенные скорости. Для дальнейшего важно рассмотреть общий случай движения. В то же время плоскопараллельное дв ижение не занимает особого положения, и объем сведений о его свойствах может быть уменьшен или увеличен в зависимости от конкретных обстоятельств. Вообще, центральное место здесь занимает вопрос о способах описания движения (выбор обобщенных координат) и теоремы о распределении скоростей. Теоремы о распределении ускорений, геометрические построения (центроиды, аксоиды, план скоростей) и т. д. представляют собой роскошь , которую можно себе позволить, если это возможно и целесообразно. Сюда же можно отнести и теорию сложного движения точки, рассматриваемую обычным способом в этом же разделе.  [c.74]


Смотреть страницы где упоминается термин Геометрическая иллюстрация теоремы : [c.42]   
Смотреть главы в:

Динамика системы твердых тел Т.2  -> Геометрическая иллюстрация теоремы



ПОИСК



Иллюстрация



© 2025 Mash-xxl.info Реклама на сайте