Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциальная энергия, определяющее уравнение в конфигурации

Резюме. Движение произвольной механической системы вблизи положения устойчивого равновесия удобно изучать с помощью пространства конфигураций. В этом случае пространство евклидово, а переменные qi служат в нем прямолинейными координатами. Главные оси квадратичной формы потенциальной энергии определяют п взаимно ортогональных направлений в пространстве конфигураций, которые могут быть выбраны в качестве осей естественной системы координат. С-точка совершает гармонические колебания вдоль этих направлений с частотами, меняющимися от одной оси к другой. Амплитуды и фазы этих колебаний, называемых нормальными , произвольны и зависят от начальных условий. Произвольное движение системы является суперпозицией нормальных колебаний. В результате такого движения С-точка описывает фигуры Лиссажу в пространстве конфигураций. Для устойчивости равновесия требуется, чтобы корни характеристического уравнения были положительны, так как в противном случае нарушается колебательный характер движения.  [c.189]


Чтобы попять, что такое конфигурационное вырождение и как оно возникает при наличии симметрически-эквивалентных равновесных ядерпых конфигураций, достаточно провести качественное рассмотрение решения колебательно-вращательного уравнения Шредингера. Для молекулы метана можно выбрать в качестве равновесной конфигурацию А или С (на рис. 9.2), чтобы определить оси Эккарта (х, г/, г), а следовательно, углы Эйлера и колебательные смещения Да,-. В зависимости от выбора конфигурации А или С получаем колебательно-вращательные волновые функции и энергии Еа либо с и f , где п = 1, 2, 3,. .. для последовательных собственных состояний. Если потенциальный барьер между минимумами Л и С потенциальной кривой Vn очень высок (как в случае метана), то волновые функции и локализованы соответственно в минимуме Лив мини-  [c.224]


Смотреть страницы где упоминается термин Потенциальная энергия, определяющее уравнение в конфигурации : [c.26]    [c.339]   
Смотреть главы в:

Нелинейная теория упругости  -> Потенциальная энергия, определяющее уравнение в конфигурации



ПОИСК



1.125, 126 — Определяемые

Конфигурация

Уравнение определяющее

Уравнение энергии

Энергия потенциальная



© 2025 Mash-xxl.info Реклама на сайте