Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химические элементы

Из сказанного можно заключить, что имеется некоторое различие в понятиях металл как химический элемент и металл как вещество, но н то и другое определения обусловлены особенностями внутреннего строения атомов металлических веществ, которое одинаково у чистых металлов и у их сплавов.  [c.14]

Медь — химический элемент 1 группы Периодической системы элементов, порядковый номер 29, атомная масса 63,54. Медь — металл красного, в изломе розового цвета. Температура плавления 1083 " С. Кристаллическая г. ц. к. решетка с периодом а = 0,36074 нм. Плотность меди 8,94 г/см Медь обладает наибольшей (после серебра) электропроводностью и теплопроводностью Удельное электросопротивление меди составляет 0,0178 мкОм-м. В зависимости от чистоты медь поставляют следующих марок МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), М3 (99,5 % Си) и М4 (99,0 % uV Присутствующие в меди примеси оказывают большое влияние на ее свойства.  [c.342]


Химико-термическая обработка основана на диффузионном насыщении при повышенных температурах поверхности стальных изделий химическими элементами С, М, А1, Сг, 51, В и др.  [c.137]

Ионная имплантация — это внедрение ионов химических элементов бомбардировкой поверхности пучками соответствующих ускоренных ионов в вакууме. Она обеспечивает повышение микротвердости и выносливости в несколько раз.  [c.34]

Материал по каждой марке стали и сплава включает следующие данные заменитель марки стали и сплава, вид поставки, назначение, содержание химических элементов в процентах по массовой доле, температуры критических точек, механические свойства, жаростойкость, коррозионная стойкость, технологические свойства, свариваемость, литейные свойства, температурный интервал ковки и условия охлаждения после ковки, обрабатываемость резанием, прокаливаемость, флокеночувствительность, склонность к отпускной хрупкости.  [c.8]

Химические элементы в сталях условно обозначаются следующим образом алюминий (А1) — Ю, азот (А) — А (только в высоколегированных сталях), бор (В) — Р, ванадий (V) — Ф, вольфрам ( ) — В, кремний (51) — С, кобальт (Со) — К, марганец (Мп) — Г, медь (Си) — Д, молибден (Мо) — М, никель (N1) — Н, ниобий (N8) — Б, титан (Т1) — Т, хром (Сг) — X, цирконий (2г) — Ц.  [c.48]

Большинство применяемых в промышленности металлов содержит достаточное количество нерастворимых примесей и гетерогенное зарождение центров кристаллизации в их расплавах происходит при переохлаждениях 1...10 К. Для интенсификации процессов гетерогенной кристаллизации, а также в целях регулирования размеров кристаллитов в расплав вводят модификаторы или катализаторы зарождения, стимулирующие образование зародышей. Эти вещества могут быть соединениями, нерастворимыми в расплаве и хорошо им смачивающимися, т. е. значения краевого угла с образующейся твердой фазой невелики, или химическими элементами, которые образуют с жидким расплавом соединения, способствующие зарождению центров кристаллизации.  [c.440]

При нагреве и охлаждении в металлах происходят следующие основные структурные превращения 1) образование границ зерен 2) выравнивание границ зерен и их рост 3) перераспределение химических элементов 4) коагуляция и сфероидизация фаз 5) изменение плотности и перераспределение дефектов кристаллической решетки.  [c.501]

Материал Наименование химического элемента  [c.13]

Стали — это сплавы железа с углеродом и добавками других химических элементов, предназначенных для придания ей определенных свойств. По сравнению с другими материалами стали характеризуются высокой прочностью, пластичностью, хорошей обрабатываемостью. Термообработка большинства сталей значительно улучшает их свойства. По составу стали разделяют на углеродистые и легированные. Углеродистые стали бывают обыкновенного качества (ГОСТ 380 — 71), конструкционные качественные (ГОСТ 1050 — 74).  [c.158]


Ei — формула г-го химического элемента (21.1) е — электростатический заряд (7.5)  [c.6]

S — число различных химических элементов в системе  [c.7]

Прежде чем воспользоваться количественными мерами химического состава, необходимо указать вещества, которые содержит интересующая система и характеризовать единицу измерения их количеств (моль). На основании химико-аналитических данных вполне определенно можно судить о качественном и количественном элементном составе, поскольку атомы химических элементов выступают как неделимые структурные составляющие вещества при любых его химических превращениях. Однако именно из-за инвариантности элементного состава к таким превращениям количества химических элементов не всегда пригодны для выражения химического состава системы в основу модели ее внутреннего строения могут быть положены не только атомы химических элементов, но и другие структурные составляющие, такие как молекулы, ионы, электроны, комплексы, дефекты кристаллической решетки и т. п. Все эти единицы структуры будем называть составляющими веществами (кратко — составляющими).  [c.16]

Энергия за вычетом этих слагаемых называется внутренней энергией (U). Она сосредоточена в массе вещества и в электромагнитном излучении, т. е. это сумма энергии излучения, кинетической энергии движения составляющих вещество микрочастиц, потенциальной энергии из взаимодействия и энергии, эквивалентной массе покоя всех этих частиц согласно уравнению Эйнштейна. При термодинамическом анализе ограничиваются каким-либо определенным уровнем энергии и определенными частицами, не затрагивая более глубоко лежащих уровней. Для химических процессов, например, несущественна энергия взаимодействия нуклонов в ядрах атомов химических элементов, поскольку она остается неизменной при химических реакциях. В роли компонентов системы в этом случае могут, как правило, выступать атомы химических элементов. Но при ядерных реакциях компонентами уже должны быть элементарные частицы. Внутренняя энергия таких неизменных в пределах рассматриваемого явления структурных единиц вещества принимается за условный уровень отсчета энергии и входит как константа в термодинамические соотношения.  [c.41]

У компонентов функции образования совпадают с относительными величинами. В таблицах термодинамических свойств для общего пользования принято приводить. функции образо-ваиия веществ из химических элементов в их стандартных состояниях, так как такие функции могут применяться для расчетов в системах с разным компонентным составом.  [c.99]

Набор компонентов, найденный таким способом, может оказаться недостаточным, если вначале не выделить из всех рассматриваемых составляющих такие, которые не вступают в химические реакции не из-за их стехиометрии, а по иным, например кинетическим, причинам. Такие вещества должны считаться компонентами вне зависимости от результатов анализа формульной матрицы системы (см. 1). С другой стороны, этот набор может быть и избыточным, так как формульная матрица не учитывает количеств составляющих, поэтому не-исключено, что они могут образовываться из меньшего числа веществ. Эти физические особенности выбора компонентного состава при решениях задачи на ЭВМ учитываются обычно программными средствами. Когда набор компонентов выяснен и их число оказывается меньше, чем число входящих в систему химических элементов (т. е. ранг llp,7llкомпоненты системы, так как это сокращает число переменных. Вместо реакции (21.1) в этом случ ае будет реакция  [c.177]

На основании результатов своих опытов Томсон сделал вывод, что атомы вещества не являются неделимыми. Из атома любого химического элемента могут быть вырваны отрицательно заряженные частицы с массой, меньшей одной тысячной массы атома водорода. Все эти частицы имеют одинаковую массу и обладают одинаковым электрическим зарядом. Эти частицы называют электронами.  [c.166]

Линейчатый спектр излучения у кал дого химического элемента свой, не совпадающий со спектром ни одного другого химического элемента.  [c.277]

Линии спектра поглощения расположены в тех местах спектра, в которых находятся линии спектра излучения данного химического элемента, когда вещество излучает свет.  [c.277]


Спектральный анализ. Исследование линейчатого спектра вещества позволяет определить, из каких химических элементов оно состоит и в каком количестве содержится каждый элемент в данном веществе.  [c.277]

Изотопы. Ядра с одинаковым числом протонов, но различным числом нейтронов являются ядрами различных изотопов одного химического элемента. Из-за разного числа нейтронов ядра различных изотопов одного химиче-  [c.317]

Неживая материя также существует во многих формах. Сочетания протонов, нейтронов и электронов образуют около ста различных химических элементов и около тысячи известных изотопов. Индивидуальные элементы соединяются в различных соотношениях, образуя, может быть, 10 или больше разных идентифицированных химических соединений, и к этому числу можно добавить огромное количество жидких и твердых растворов и сплавов различного состава, имеющих самые разнообразные физические свойства.  [c.20]

В условном обозначении электродов для сварки сталей с > > ()0 кгс/мм группа индексов, обозначающих характеристики нанлавлеппого металла и металла шва, указывает среднее содержание основных химических элементов в наплавленном металле и минимальную температуру, при которой ударная вязкость металла составляет не менее 3,5 кгс-м/см . Эта запись включает  [c.107]

Обозначения типов электродов состоят из индекса Э (электроды для дуговой сварки) и следующих за ним цифр и букв. Две цифры, следующие за индексом, указывают среднее содержание углерода в наплавленном металле в сотых долях процента. Цифры, следующие за буквенными обозначениями химических элементов, показывают среднее значение олемелта в процентах (табл. 17).  [c.110]

Принцип обозначения химического состава наплавленного металла прежний — углерод дан в сотых долях процента, среднее содержашю основных химических элементов указано с точностью до 1% после следующих буквенных символов А — азот, Б - ниобий, В — вольфрам, Г — марганец, К — кобальт, М — молибден, II --- иике.ль, Р — бор, С —- кремний, Т — титан, Ф — ванадий, X — хром. Показатели твердости наплавленного металла в зависимости от типа электрода даны либо в исходном поело наплавки состоянии, либо после те])мообработки.  [c.113]

В соответствии с классификацией, предложенной Ы. Т. Гудовым, все примеси (химические элементы), содержащиеся в стали, можно разделить на четыре группы  [c.341]

Бериллий, как химический элемент был открыт даже раньше алюминия и магния (в 1797 г. Вокеленом), и вскоре были получены первые образцы метал.нического бериллия ( 1827 г.).  [c.600]

Пространственные или сетчатые полимеры образуются при соединении ("сшивке") макромолекул между собой в поперечном направлении прочными химическими сввзями непосредственно или через химические элементы или радпкат. В результате такого соед1гаения макромолекул  [c.21]

Например, если система содержит химические элементы А, В, С, образующие молекулы АВ, А2В2, В С и АВзС, то формульная атомная матрица системы  [c.176]

Ликойчатк..1е скактры. Вая -ным фактором, свидетельствующим о сложной внутренней структуре атомов, было открытие линейчатых спектров. Исследования показали, что при нагревании до высокой температуры пары любого химического элемента испуска ют свет, узкий пучок которого разлагается призмой на несколько узких пучков света различного цвета. Совокупность наблюдае-  [c.307]

Таким образом, порядковыт" номер химического элемента в таблице Менделеева определяется числом положительных элементарных зарядов в ядре любого атома химического элемента или числом электронов в оболочке нейтралыfо г< ат м а.  [c.317]


Смотреть страницы где упоминается термин Химические элементы : [c.107]    [c.13]    [c.526]    [c.176]    [c.176]    [c.176]    [c.178]    [c.179]    [c.239]    [c.306]    [c.307]    [c.307]    [c.307]    [c.308]    [c.308]    [c.312]    [c.317]    [c.317]    [c.317]    [c.318]   
Смотреть главы в:

Справочник автомобильного механика  -> Химические элементы

Справочник рабочего литейщика Издание 3  -> Химические элементы

Справочник автомобильного механика  -> Химические элементы


Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.6 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.0 ]

Справочник рабочего литейщика Издание 3 (1961) -- [ c.20 ]



ПОИСК





© 2021 Mash-xxl.info Реклама на сайте