Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электроосаждение композиционных материалов

Методика и аппаратура для получения никелевого композиционного материала, содержащего нитевидные кристаллы карбида кремния, описаны в работе [224 I. Отмечено, что большая степень реализации прочности нитевидных кристаллов в композиции может быть достигнута только при достаточной ориентации кристаллов в материале в заданном направлении. Получены образцы композиционных материалов, содержащих около 10 об. % кристаллов карбида кремния, достаточно хорошо ориентированных в одном направлении. Материал имел очень высокие прочностные свойства предел прочности при растяжении — 227 кгс/мм , модуль упругости 31 200 кгс/мм . Эти результаты дают основание полагать, что метод электроосаждения является одним из наиболее перспективных, позволяющих реализовать уникальные свойства нитевидных кристаллов в металлических композиционных материалах.  [c.180]


Дальнейшее усовершенствование процесса электроосаждения никеля и подбор оптимального состава электролита позволило получить никелевые покрытия, не содержащие фосфора. Методом изостатического прессования этих волокон были получены образцы композиционного материала с плотностью, составляющей 98% от теоретической. Результаты испытаний композиций с 50об.% углеродных волокон приведены на рис. 43. Прочность композиционного материала оказалась несколько ниже расчетной, причем расхождение теоретических и экспериментальных данных увеличивается при возрастании температуры испытаний. Главной причиной недостаточно высоких прочностных характеристик полученного материала авторы считают разупрочнение углеродных волокон при формировании композиции, к этому следует добавить, что снижение механических свойств может быть также вследствие недостаточной прочности связи на границе матрицы и волокон. При исследовании взаимодействия никелевой матрицы с углеродным волокном при температуре 980° С (предполагаемой температуре использования материала) и жаростойкости композиции установлено, что последняя для композиционного материала определяется скоростью окисления углеродных волокон с образованием моноокиси углерода в результате массовой диффузии кислорода через слой матричного металла, а также вследствие окисления волокон по длине при выходе торцов волокон на поверхность исследуемого образца. Было показано, что при достаточно высоких температурах и длительных выдержках углеродные волокна полностью выгорают, оставляя открытые поры в матричном металле.  [c.398]

В работе [8] сообщается о разработке метода электролитического осаждения на углеродный жгут различных металлических покрытий — никеля, алюминия, свинца и меди. При электроосаждении никеля из сульфатных электролитов хорошие результаты получаются лишь для углеродных жгутов с числом элементарных волокон не более 2500, увеличение числа элементарных воло1 он в жгуте до 5000 приводит к формированию неоднородного по толщине никелевого покрытия и даже к отсутствию покрытия в центральной части н гута вследствие плохой рассеивающей способности электролита. Образцы композиционного материала содержали до 50 об. % углеродных волокон. Компактные образцы получали прессованием через жидкую фазу пакета волокон с матричным покрытием и топким слоем сплава системы медь — серебро, обеспечивающим формирование жидкой фазы в процессе прессования. Свойства композиционного материала в работе [81 не сообщаются.  [c.400]



Смотреть главы в:

Гальванотехника справочник  -> Электроосаждение композиционных материалов



ПОИСК



Композиционные материалы

Материалы для электроосаждения



© 2025 Mash-xxl.info Реклама на сайте